Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins

Abstract

The aim of this study was to study interactions between stromal bone marrow microenvironment and leukemic cells. We tested the hypothesis that stromal cells prevent apoptosis of AML cells by up-regulating anti-apoptotic proteins in leukemic blasts. In HL-60 and NB-4 cells, serum deprivation- and ara-C-induced apoptosis was diminished when cells were cocultured with murine MS-5 stromal cells (P < 0.02). This effect was reproduced with conditioned medium from MS-5 cells. Cocultivation with stromal cells induced Bcl-2 expression levels, both by PCR analysis and flow cytometry. In primary AML (n = 14), ara-C-induced apoptosis was significantly lower in cells cocultured with MS-5 cells than in controls (P < 0.001). This effect was partially preserved when leukemic cells were separated from stromal cells by a microporous insert (in 5/9 samples, P = 0.04). In addition, Bcl-2 levels were significantly higher in stroma-supported than in control CD34+ AML cells (P < 0.01). Bcl-XL levels were higher in 5/7 samples grown on stromal layers. Of note, in AML patients resistant to induction chemotherapy (n = 6), Bcl-2 increased significantly after cultivation with stromal cells, but no such increase was noted in cells from chemotherapy-sensitive patients. In conclusion, MS-5 stromal cells prevented apoptosis in HL-60 cells and in primary AML blasts via modulation of Bcl-2 family proteins. The observed association of high Bcl-2 expression in stroma-supported AML blasts in vitro with resistance to chemotherapy in vivo suggests that the same mechanisms may be operational in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Dexter TM . Regulation of hemopoietic cell growth and development: experimental and clinical studies Leukemia 1989 7: 469–474

    Google Scholar 

  2. Dorshkind K . Regulation of hemopoiesis by bone marrow stromal cells and their products Annu Rev Immunol 1990 8: 111–137

    CAS  PubMed  Google Scholar 

  3. Spooncer E, Heyworth CM, Dunn A, Dexter TM . Self-renewal and differentiation of interleukin-3-dependent multipotent stem cells are modulated by stromal cells and serum factors Differentiation 1986 31: 111–118

    CAS  PubMed  Google Scholar 

  4. Dexter TM, Spooncer E . Growth and differentiation in the hemopoietic system Annu Rev Cell Biol 1987 3: 423–441

    CAS  PubMed  Google Scholar 

  5. Asosingh K, Gunthert U, Bakkus MH, De Raeve H, Goes E, Van Riet I, Van Camp B, Vanderkerken K . In vivo induction of insulin-like growth factor-I receptor and CD44v6 confers homing and adhesion to murine multiple myeloma cells Cancer Res 2000 60: 3096–3104

    CAS  PubMed  Google Scholar 

  6. Shimakura Y, Kawada H, Ando K, Sato T, Nakamura Y, Tsuji T, Kato S, Hotta T . Murine stromal cell line HESS-5 maintains reconstituting ability of ex vivo-generated hematopoietic stem cells from human bone marrow and cytokine-mobilized peripheral blood Stem Cells 2000 18: 183–189

    CAS  PubMed  Google Scholar 

  7. Koller MR, Oxender M, Jensen TC, Goltry KL, Smith AK . Direct contact between CD34+lin− cells and stroma induces a soluble activity that specifically increases primitive hematopoietic cell production Exp Hematol 1999 27: 734–741

    CAS  PubMed  Google Scholar 

  8. Bendall LJ, Daniel A, Kortlepel K, Gottlieb DJ . Bone marrow adherent layers inhibit apoptosis of acute myeloid leukemia cells Exp Hematol 1994 22: 1252–1260

    CAS  PubMed  Google Scholar 

  9. Manabe A, Coustan-Smith E, Behm FG, Raimondi SC, Campana D . Bone marrow-derived stromal cells prevent apoptotic cell death in B-lineage acute lymphoblastic leukemia Blood 1992 79: 2370–2377

    CAS  PubMed  Google Scholar 

  10. Panayiotidis P, Jones D, Ganeshaguru K, Foroni L, Hoffbrand AV . Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro Br J Haematol 1996 92: 97–103

    CAS  PubMed  Google Scholar 

  11. Garrido SM, Appelbaum FR, Willman CL, Banker DE . Acute myeloid leukemia cells are protected from spontaneous and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5) Exp Hematol 2001 29: 448–457

    CAS  PubMed  Google Scholar 

  12. Kumagai M, Manabe A, Pui CH, Behm FG, Raimondi SC, Hancock ML, Mahmoud H, Crist WM, Campana D . Stroma-supported culture in childhood B-lineage acute lymphoblastic leukemia cells predicts treatment outcome J Clin Invest 1996 97: 755–760

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gibson LF, Piktel D, Narayanan R, Nunez G, Landreth KS . Stromal cells regulate bcl-2 and bax expression in pro-B cells Exp Hematol 1996 24: 628–637

    CAS  PubMed  Google Scholar 

  14. Itoh K, Friel J, Laker C, Zeller W, Just U, Bittner S, Nibbs RJ, Harrison PR, Nishikawa SI, Mori KJ, Ostertag W . The role of soluble growth factors in inducing transient growth and clonal extinction of stroma cell dependent erythroblastic leukemia cells Leukemia 1997 11: 1753–1761

    CAS  PubMed  Google Scholar 

  15. Itoh K, Friel J, Kluge N, Kina T, Kondo-Takaori A, Kawamata S, Uchiyama T, Ostertag W . A novel hematopoietic multilineage clone, Myl-D-7, is stromal cell-dependent and supported by an alternative mechanism(s) independent of stem cell factor/c-kit interaction Blood 1996 87: 3218–3228

    CAS  PubMed  Google Scholar 

  16. Itoh K, Tezuka H, Sakoda H, Konno M, Nagata K, Uchiyama T, Uchino H, Mori KJ . Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow Exp Hematol 1989 17: 145–153

    CAS  PubMed  Google Scholar 

  17. Issaad C, Croisille L, Katz A, Vainchenker W, Coulombel L . A murine stromal cell line allows the proliferation of very primitive human CD34++/CD38− progenitor cells in long-term cultures and semisolid assays Blood 1993 81: 2916–2924

    CAS  PubMed  Google Scholar 

  18. Nishihara M, Wada Y, Ogami K, Ebihara Y, Ishii T, Tsuji K, Ueno H, Asano S, Nakahata T, Maekawa T . A combination of stem cell factor and granulocyte colony-stimulating factor enhances the growth of human progenitor B cells supported by murine stromal cell line MS-5 Eur J Immunol 1998 28: 855–864

    CAS  PubMed  Google Scholar 

  19. Gan OI, Dorrell C, Pereira DS, Ito CY, Wang JC, Dick JE . Characterization and retroviral transduction of an early human lymphomyeloid precursor assayed in nonswitched long-term culture on murine stroma Exp Hematol 1999 27: 1097–1106

    CAS  PubMed  Google Scholar 

  20. Auffray I, Dubart A, Izac B, Vainchenker W, Coulombel L . A murine stromal cell line promotes the proliferation of the human factor-dependent leukemic cell line UT-7 Exp Hematol 1994 22: 417–424

    CAS  PubMed  Google Scholar 

  21. Berardi AC, Meffre E, Pflumio F, Katz A, Vainchenker W, Schiff C, Coulombel L . Individual CD34+CD38lowCD19−CD10− progenitor cells from human cord blood generate B lymphocytes and granulocytes Blood 1997 89: 3554–3564

    CAS  PubMed  Google Scholar 

  22. Gan OI, Dorrell C, Pereira DS, Ito CY, Wang JC, Dick JE . Characterization and retroviral transduction of an early human lymphomyeloid precursor assayed in nonswitched long-term culture on murine stroma Exp Hematol 1999 27: 1097–1106

    CAS  PubMed  Google Scholar 

  23. Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, Berger R . NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3) Blood 1991 77: 1080–1086

    CAS  PubMed  Google Scholar 

  24. Andreeff M, Darzynkiewicz Z, Sharpless TK, Clarkson BD, Melamed MR . Discrimination of human leukemia subtypes by flow cytometric analysis of cellular DNA and RNA Blood 1980 55: 282–293

    CAS  PubMed  Google Scholar 

  25. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C . A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V J Immunol Meth 1995 184: 39–51

    CAS  Google Scholar 

  26. Horan PK, Slezak SE . Stable cell membrane labelling Nature 1989 340: 167–168

    CAS  PubMed  Google Scholar 

  27. Traycoff CM, Kosak ST, Grigsby S, Srour EF . Evaluation of ex vivo expansion potential of cord blood and bone marrow hematopoietic progenitor cells using cell tracking and limiting dilution analysis Blood 1995 85: 2059–2068

    CAS  PubMed  Google Scholar 

  28. Schwartz A, Fernandez-Repollet E . Development of clinical standards for flow cytometry Ann NY Acad Sci 1993 677: 28–39

    CAS  PubMed  Google Scholar 

  29. Lavabre-Bertrand T, Janossy G, Ivory K, Peter R, Secker-Walker L, Porwit-MacDonald A . Leukemia associated changes identified by quantitative flow cytometry: I. CD10 expression Cytometry 1994 18: 209–217

    CAS  PubMed  Google Scholar 

  30. Chomozynski P, Sacchi N . Single step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction Anal Biochem 1987 162: 156–159

    Google Scholar 

  31. Livak KJ . Comparative Ct method. ABI Prism 7700 Sequence Detection System. (User Bulletin No. 2) PE Applied Biosystems 1997

    Google Scholar 

  32. Kobari L, Dubart A, Le Pasteur F, Vainchenker W, Sainteny F . Hematopoietic-promoting activity of the murine stromal cell line MS-5 is not related to the expression of the major hematopoietic cytokines J Cell Physiol 1995 163: 295–304

    CAS  PubMed  Google Scholar 

  33. Nishi N, Ishikawa R, Inoue H, Nishikawa M, Yoneya T, Kakeda M, Tsumura H, Ohashi H, Mori KJ . In vitro long-term culture of human primitive hematopoietic cells supported by murine stromal cell line MS-5 Leukemia 1997 11: 468–473

    PubMed  Google Scholar 

  34. Mitjavila MT, Filippi MD, Cohen-Solal K, Le Pasteur F, Vainchenker W, Sainteny F . The Mpl-ligand is involved in the growth-promoting activity of the murine stromal cell line MS-5 on ES cell-derived hematopoiesis Exp Hematol 1998 26: 124–134

    CAS  PubMed  Google Scholar 

  35. Suzuki J, Fujita J, Taniguchi S, Sugimoto K, Mori KJ . Characterization of murine hemopoietic-supportive (MS1 and MS-5) and non-supportive (MS-K) cell lines Leukemia 1992 6: 452–458

    CAS  PubMed  Google Scholar 

  36. Nishino T, Hisha H, Nishino N, Adachi M, Ikehara S . Hepatocyte growth factor as a hematopoietic regulator Blood 1995 85: 3093–3100

    CAS  PubMed  Google Scholar 

  37. Bendall LJ, Kortlepel K, Gottlieb DJ . Human acute myeloid leukemia cells bind to bone marrow stroma via a combination of beta-1 and beta-2 integrin mechanisms Blood 1993 82: 3125–3132

    CAS  PubMed  Google Scholar 

  38. Tanaka Y, Albelda SM, Horgan KJ, van Seventer GA, Shimizu Y, Newman W, Hallam J, Newman PJ, Buck CA, Shaw S . CD31 expressed on distinctive T cell subsets is a preferential amplifier of beta 1 integrin-mediated adhesion J Exp Med 1992 176: 245–253

    CAS  PubMed  Google Scholar 

  39. Kinashi T, Springer TA . Steel factor and c-kit regulate cell-matrix adhesion Blood 1994 83: 1033–1038

    CAS  PubMed  Google Scholar 

  40. Drzeniek Z, Stocker G, Siebertz B, Just U, Schroeder T, Ostertag W, Haubeck HD . Heparan sulfate proteoglycan expression is induced during early erythroid differentiation of multipotent hematopoietic stem cells Blood 1999 93: 2884–2897

    CAS  PubMed  Google Scholar 

  41. Lopez-Casillas F, Wrana JL, Massague J . Betaglycan presents ligand to the TGF beta signaling receptor Cell 1993 73: 1435–1444

    CAS  PubMed  Google Scholar 

  42. Lamarre J, Vasudevan J, Gonias SL . Plasmin cleaves betaglycan and releases a 60 kDa transforming growth factor-beta complex from the cell surface Biochem J 1994 302: 199–205

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA . A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1) J Exp Med 1996 184: 1101–1109

    CAS  PubMed  Google Scholar 

  44. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T . Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1 Nature 1996 382: 635–638

    CAS  PubMed  Google Scholar 

  45. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA . Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice Proc Natl Acad Sci USA 1998 95: 9448–9453

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T . Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4 Science 1999 283: 845–848

    CAS  PubMed  Google Scholar 

  47. Deichmann M, Kronenwett R, Haas R . Expression of the human immunodeficiency virus type-1 coreceptors CXCR-4 (fusin, LESTR) and CKR-5 in CD34+ hematopoietic progenitor cells Blood 1997 89: 3522–3528

    CAS  PubMed  Google Scholar 

  48. Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L . The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1 Blood 1998 91: 4523–4530

    CAS  PubMed  Google Scholar 

  49. Signoret N, Oldridge J, Pelchen-Matthews A, Klasse PJ, Tran T, Brass LF, Rosenkilde MM, Schwartz TW, Holmes W, Dallas W, Luther MA, Wells TN, Hoxie JA, Marsh M . Phorbol esters and SDF-1 induce rapid endocytosis and down modulation of the chemokine receptor CXCR4 J Cell Biol 1997 139: 651–664

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Heberlein C, Friel J, Laker C, von Laer D, Bergholz U, Bogel M, Ashman LK, Klingler K, Ostertag W . Downregulation of c-kit (stem cell factor receptor) in transformed hematopoietic precursor cells by stroma cells Blood 1999 93: 554–563

    CAS  PubMed  Google Scholar 

  51. Cardoso AA, Keenan TD, Veiga JP, Tse WT, Sallan SE, Guinan EC, Nadler LM . Leukemia milieu differentiates bone marrow mesenchymal stem cells into stromal-like cells that support leukemia cell survival Blood 2001 98: 764a

    Google Scholar 

  52. Coulombel L, Eaves CJ, Eaves AC . Enzymatic treatment of long-term human marrow cultures reveals the preferential location of primitive hemopoietic progenitors in the adherent layer Blood 1983 62: 291–297

    CAS  PubMed  Google Scholar 

  53. Dexter TM, Allen TD, Lajtha LG . Conditions controlling the proliferation of hemopoietic stem cells in vitro J Cell Physiol 1977 91: 335–344

    CAS  PubMed  Google Scholar 

  54. Sutherland HJ, Eaves CJ, Eaves AC, Dragowska W, Lansdorp PM . Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro Blood 1989 74: 1563–1570

    CAS  PubMed  Google Scholar 

  55. Verfaillie C, Blakolmer K, McGlave P . Purified primitive human hematopoietic progenitor cells with long-term in vitro repopulating capacity adhere selectively to irradiated bone marrow stroma J Exp Med 1990 172: 509–520

    CAS  PubMed  Google Scholar 

  56. Bradstock KF, Gottlieb DJ . Interaction of acute leukemia cells with the bone marrow microenvironment: implications for control of minimal residual disease Leuk Lymphoma 1995 18: 1–16

    CAS  PubMed  Google Scholar 

  57. Takahashi A, Yamamoto K, Okuma M, Sasada M . Bone marrow stromal cells attenuate mitoxantrone cytotoxicity against HL-60 leukemic cells Anticancer Drugs 1992 3: 647–650

    CAS  PubMed  Google Scholar 

  58. Fisher TC, Milner AE, Gregory CD, Jackman AL, Aherne GW, Hartley JA, Dive C, Hickman JA . Bcl-2 modulation of apoptosis induced by anticancer drugs: resistance to thymidylate stress is independent of classical resistance pathways Cancer Res 1993 53: 3321–3326

    CAS  PubMed  Google Scholar 

  59. Korsmeyer S . Bcl-2 initiates a new category of oncogenes: regulators of cell death Blood 1992 80: 879–886

    CAS  PubMed  Google Scholar 

  60. Miyashita T, Reed JC . Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line Blood 1993 81: 151–157

    CAS  PubMed  Google Scholar 

  61. Nunez G, London L, Hockenbery D, Alexander M, McKearn JP, Korsmeyer SJ . Deregulated bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines J Immunol 1990 144: 3602–3610

    CAS  PubMed  Google Scholar 

  62. Vaux DL, Cory S, Adams JM . Bcl-2 gene promotes haematopoietic cell survival and cooperates with c-myc to immortalize pre-B cells Nature 1988 335: 440–442

    CAS  PubMed  Google Scholar 

  63. Bradbury DA, Russell NH . Comparative quantitative expression of bcl-2 by normal and leukaemic myeloid cells Br J Haematol 1995 91: 374–379

    CAS  PubMed  Google Scholar 

  64. Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E . High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy Blood 1993 81: 3091–3096

    CAS  PubMed  Google Scholar 

  65. Karakas T, Maurer U, Weidman E, Miething CC, Hoelzer D, Bergmann L . High expression of bcl-2 mRNA as a determinant of poor prognosis in acute myeloid leukemia Ann Oncol 1998 9: 159–165

    CAS  PubMed  Google Scholar 

  66. Maung ZT, MacLean FR, Reid MM, Pearson AD, Proctor SJ, Hamilton PJ, Hall AG . The relationship between bcl-2 expression and response to chemotherpay in acute leukaemia Br J Haematol 1994 88: 105–109

    CAS  PubMed  Google Scholar 

  67. Porwit-MacDonald A, Ivory K, Wilkinson S, Wheatley K, Wong L, Janossy G . Bcl-2 protein expression in normal human bone marrow precursors and in acute myelogenous leukemia Leukemia 1995 9: 1191–1198

    CAS  PubMed  Google Scholar 

  68. Takashita E, Sugimoto K, Adachi Y, Mori KJ . Induction of bcl-2 gene expression by intercellular information from hemopoietic supportive stromal cells to DA-1 cells J Cell Physiol 1994 161: 367–373

    CAS  PubMed  Google Scholar 

  69. Borner C . Diminished cell proliferation associated with the death-protective activity of Bcl-2 J Biol Chem 1996 271: 12695–12698

    CAS  PubMed  Google Scholar 

  70. Mazel S, Burtrum D, Petrie HT . Regulation of cell division cycle progression by bcl-2 expression: a potential mechanism for inhibition of programmed cell death J Exp Med 1996 183: 2219–2226

    CAS  PubMed  Google Scholar 

  71. Linette GP, Li Y, Roth K, Korsmeyer SJ . Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation Proc Natl Acad Sci USA 1996 93: 9545–9552

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang DC, O'Reilly LA, Strasser A, Cory S . The anti-apoptosis function of Bcl-2 can be genetically separated from its inhibitory effect on cell cycle entry EMBO J 1997 16: 4628–4638

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ohkawa H, Harigaya K . Effect of direct cell-to-cell interaction between the KM-102 clonal human marrow stromal cell line and the HL-60 myeloid leukemic cell line on the differentiation and proliferation of the HL-60 line Cancer Res 1987 47: 2879–2882

    CAS  PubMed  Google Scholar 

  74. Ossenkoppele GJ, Denkers I, Wijermans P, Huijgens PC, Nauta JJ, Beelen RJ, Langenhuijsen MM . Differentiation induction of HL-60 cells in a long-term bone marrow culture of acute myeloid leukemia Leukemia Res 1990 14: 611–616

    CAS  Google Scholar 

  75. Konopleva M, Zhao S, Jiang S, Snell V, Zhang X, Reed JC . Overexpression of antiapoptotic Bcl-XL and Bcl-2 contributes to chemoresistance of quiescent leukemic progenitors and can be selectively reversed by ATRA Blood 1998 92: 600a

    Google Scholar 

  76. Hu ZB, Yang GS, Li M, Miyamoto N, Minden MD, McCulloch EA . Mechanism of cytosine arabinoside toxicity to the blast cells of acute myeloblastic leukemia: involvement of free radicals Leukemia 1995 9: 789–798

    CAS  PubMed  Google Scholar 

  77. Hu ZB, Minden MD, McCulloch EA . Direct evidence for the participation of bcl-2 in the regulation by retinoic acid of the Ara-C sensitivity of leukemic stem cells Leukemia 1995 9: 1667–1673

    CAS  PubMed  Google Scholar 

  78. Hu ZB, Minden MD, McCulloch EA . Phosphorylation of BCL-2 after exposure of human leukemic cells to retinoic acid Blood 1998 92: 1768–1775

    CAS  PubMed  Google Scholar 

  79. Campos L, Sabido O, Rouault JP, Guyotat D . Effects of BCL-2 antisense oligodeoxynucleotides on in vitro proliferation and survival of normal marrow progenitors and leukemic cells Blood 1994 84: 595–600

    CAS  PubMed  Google Scholar 

  80. Keith FJ, Bradbury DA, Zhu YM, Russell NH . Inhibition of bcl-2 with antisense oligonucleotides induces apoptosis and increases the sensitivity of AML blasts to Ara-C Leukemia 1995 9: 131–138

    CAS  PubMed  Google Scholar 

  81. Konopleva M, Tari A, Lopez-Berestein A, Andreeff M . Inhibition of Bcl-2 with liposomal-delivered antisense oligonucleotides (AS-ODN) induces apoptosis and increases the sensitivity of primary acute myeloid leukemia (AML) cells and cell lines to cytosine arabinoside and doxorubicin Blood 1997 90: 494a

    Google Scholar 

  82. Andreeff M, Leysath C, Konopleva M, Huang Z . Induction of apoptosis in AML by HA14–1: a cell-permeable organic compound identified by protein structure-based computer screening that binds the BH1 to BH3 surface pocket of Bcl-2 Blood 2000 96: 502a

    Google Scholar 

  83. Marcucci G, Bloomfield CD, Balcerzak SP, Kourlas PJ, Stanley HR, Fingert H, Maghraby EA, Lucas D, Chen KK, Byrd JC, Kraut EH, Grever MR, Caligiuri MA . Phase I trial of Genasenseâ„¢ (G3139, Genta, Inc), a bcl-2 antisense (AS), in refractory (REF) or relapsed (REL) acute leukemia (AL) Blood 2000 96: 119a

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from NIH (PO1 CA55164, PO1 CA16672) and the Stringer Professorship for Cancer Treatment and Research to MA.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konopleva, M., Konoplev, S., Hu, W. et al. Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 16, 1713–1724 (2002). https://doi.org/10.1038/sj.leu.2402608

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402608

Keywords

This article is cited by

Search

Quick links