Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors

Abstract

An important target in the understanding of the pathogenesis of acute myeloid leukemias (AML) relies on deciphering the molecular features of normal and leukemic hemopoietic progenitors. In particular, the analysis of the mechanisms involved in the regulation of cell proliferation is decisive for the establishment of new targeted therapies. To gain further insight into this topic we report herein a novel approach by analyzing the role of HERG K+ channels in the regulation of hemopoietic cell proliferation. These channels, encoded by the human ether-a-gò-gò-related gene (herg), belong to a family of K+ channels, whose role in oncogenesis has been recently demonstrated. We report here that herg is switched off in normal peripheral blood mononuclear cells (PBMNC) as well as in circulating CD34+ cells, however, it is rapidly turned on in the latter upon induction of the mitotic cycle. Moreover, hergappears to be constitutively activated in leukemic cell lines as well as in the majority of circulating blasts from primary AML. Evidence is also provided that HERG channel activity regulates cell proliferation in stimulated CD34+ as well as in blast cells from AML patients. These results open new perspectives on the pathogenetic role of HERG K+ channels in leukemias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fialkow PJ, Singer JW, Adamson JW, Vaidya K, Dow LW, Ochs J, Moohr JW . Acute nonlymphocitic leukaemia: heterogeneity of stem cell origin Blood 1981 57: 1068–1073

    CAS  PubMed  Google Scholar 

  2. Blair A, Hogge DE, Sutherland HJ . Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(−)/HLA-DR Blood 1998 92: 4325–4335

    CAS  PubMed  Google Scholar 

  3. Bonnet D, Dick JE . Human acute myeloid leukaemia is organized as a hierarchy that originates from a primitive hematopoietic cell Nat Med 1997 3: 730–737

    Article  CAS  Google Scholar 

  4. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE . A cell initiating human acute myeloid leukaemia after transplantation into SCID mice Nature 1994 367: 645–648

    Article  CAS  Google Scholar 

  5. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ . Lack of expression of Thy-1(CD90) on acute myeloid leukaemia cells with long term proliferative ability in vitro and in vivo Blood 1997 89: 3104–3112

    CAS  Google Scholar 

  6. Blair A, Sutherland HJ . Primitive acute myeloid leukaemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit(CD117) Exp Hematol 2000 28: 660–671

    Article  CAS  Google Scholar 

  7. Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, Meyerrose T, Rossi R, Grimes B, Rizzieri DA, Luger SM, Phillips GL . The interleukin-3 receptor alpha chain is an unique marker for human acute myelogenous leukaemia stem cells Leukemia 2000 14: 1777–1784

    Article  CAS  Google Scholar 

  8. Guzman ML, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM, Phillips GL, Jordan CT . Expression of tumor suppressor genes interferon regulatory factor 1 and death-associated kinase in primitive acute myelogenus leukaemia cells Blood 2001 97: 2177–2179

    Article  CAS  Google Scholar 

  9. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM, Jordan CT . Nuclear factor-KB is constitutively activated in primitive human acute myelogenus leukaemia cells Blood 2001 98: 2301–2307

    Article  CAS  Google Scholar 

  10. Wonderlin WF, Strobl JS . Potassium channels, proliferation and G1 progression J Membr Biol 1996 154: 91–107

    Article  CAS  Google Scholar 

  11. Freedman BD, Price MA, Deutsch CJ . Evidence for voltage modulation of IL-2 production in mitogen-stimulated human peripheral blood lymphocytes J Immunol 1992 149: 3784–3794

    CAS  PubMed  Google Scholar 

  12. Lin CS, Boltz RC, Blake JT, Nguyen M, Talento A, Fischer PA, Springer MS, Sigal NH, Slaughter RS, Garcia ML . Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation J Exp Med 1993 177: 637–645

    Article  CAS  Google Scholar 

  13. Price M, Lee SC, Deutsch C . Charybdotoxin inhibits proliferation and interleukin 2 production in human peripheral blood lymphocytes Proc Natl Acad Sci USA 1989 86: 1017–10175

    Google Scholar 

  14. Wang S, Melkoumian Z, Woodfork KA, Cather C, Davidson AG, Wonderlin WF, Strobl JS . Evidence for an early G1 ionic event necessary for cell cycle progression and survival in the MCF-7 human breast carcinoma cell line J Cell Physiol 1998 176: 456–464

    Article  CAS  Google Scholar 

  15. Klimatcheva E, Wonderlin WF . An ATP-sensitive K+ current that regulates progression through early G1 phase of the cell cycle in MCF-7 human breast cancer cells J Membr Biol 1999 171: 35–46

    Article  CAS  Google Scholar 

  16. Xu B, Wilson BA, Lu L . Induction of human myeloblastic ML-1 cell G1 arrest by suppression of K+ channel activity Am J Physiol 1996 271: C2037–C2044

    Article  CAS  Google Scholar 

  17. Wang L, Xu B, White RE, Lu L . Growth factor- mediated K+ channel activity associated with human myeloblastic ML-1 cell proliferation Am J Physiol 1997 273: C1657–1665

    Article  CAS  Google Scholar 

  18. Xu D, Wang L, Dai W, Lu L . A requirement for K+ channel activity in growth factor-mediated extracellular signal-regulated kinase activation in human myeloblastic leukemia ML-1 cells Blood 1999 94: 139–145

    CAS  PubMed  Google Scholar 

  19. Nilius B, Wohlrab W . Potassium channels and regulation of proliferation in human melanoma cells J Physiol (Lond) 1992 445: 537–548

    Article  CAS  Google Scholar 

  20. Skryma RN, Prevarskaya NB, Dufy-Barbe L, Odessa MF, Audin J, Dufy B . Potassium conductance in the androgen-sensitive prostate cancer cell line, LNCaP: involvement in cell proliferation Prostate 1997 33: 112–122

    Article  CAS  Google Scholar 

  21. Rybalchenko V, Prevarskaya N, Van Coppenolle F, Legrand G, Lemonnier L, Le Bourhis X, Skryma R . Verapamil inhibits proliferation of LNCaP human prostate cancer cells influencing channel gating Mol Pharmacol 2001 59: 1376–1387

    Article  CAS  Google Scholar 

  22. Yao X, Kwan HY . Activity of voltage-gated K+ channels is associated with cell proliferation and Ca2+ influx in carcinoma cells of colon cancer Life Sci 1999 65: 55–62

    Article  CAS  Google Scholar 

  23. Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M . Potassium channels: molecular defects, diseases and therapeutic opportunities Pharmacol Rev 2000 52: 557–593

    CAS  PubMed  Google Scholar 

  24. Pardo LA, del Camino D, Sanchez A, Alves F, Bruggemann A, Beckh S, Stuhmer W . Oncogenic potential of EAG K+channels EMBO J 1999 18: 5540–5547

    Article  CAS  Google Scholar 

  25. Binggeli R, Weinstein RC . Membrane potentials and sodium channels: hypotheses for growth regulation and cancer formation based on changes in sodium channels and gap junctions J Theor Biol 1986 123: 377–401

    Article  CAS  Google Scholar 

  26. Warmke JW, Ganetzky B . A family of potassium channel genes related to eag in Drosophila and mammals Proc Natl Acad Sci USA 1994 91: 3438–3442

    Article  CAS  Google Scholar 

  27. Sanguinetti MC, Jang C, Curran ME, Keating MT . A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel Cell 1995 81: 299–307

    Article  CAS  Google Scholar 

  28. Arcangeli A, Bianchi L, Becchetti A, Faravelli L, Coronnello M, Mini E, Olivotto M, Wanke E . A novel inward-rectifying K+current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells J Physiol (London) 1995 489: 455–471

    Article  CAS  Google Scholar 

  29. Bianchi L, Wible B, Arcangeli A, Taglialatela M, Morra F, Castaldo P, Crociani O, Rosati B, Faravelli L, Olivotto M, Wanke E . herg encodes a K+current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res 1998 58: 815–822

    CAS  PubMed  Google Scholar 

  30. Cherubini A, Taddei GL, Crociani O, Paglierani M, Buccoliero AM, Fontana L, Noci I, Borri P, Borrani E, Giachi M, Becchetti A, Rosati B, Wanke E, Olivotto M, Arcangeli A . HERG potassium channels are more frequently expressed in human endometrial cancer as compared to non-cancerous endometrium Br J Cancer 2000 83: 1722–1729

    Article  CAS  Google Scholar 

  31. Arcangeli A, Rosati B, Cherubini A, Crociani O, Fontana L, Ziller C, Wanke E, Olivotto M . HERG and IRK-like inward rectifier currents are sequentially expressed during neuronal development of neural crest cells and their derivatives Eur J Neurosci 1997 9: 2596–2604

    Article  CAS  Google Scholar 

  32. Crociani O, Cherubini A, Piccini E, Polvani S, Costa L, Fontana L, Hofmann G, Rosati B, Wanke E, Olivotto M, Arcangeli A . erg gene(s) expression during development of the nervous and muscular system of quail embryos Mech Dev 2000 95: 239–243

    Article  CAS  Google Scholar 

  33. Faravelli L, Arcangeli A, Olivotto M, Wanke E . A HERG like K+ channel in rat F11 Drg cell line: pharmacological identification and biophysical characterization J Physiol 1996 496: 13–23

    Article  CAS  Google Scholar 

  34. Overholt JL, Ficker E, Yang T, Shams H, Bright GR, Prabhakar NR . HERG-like potassium current regulates the resting membrane potential in glomus cells of the rabbit carotid body J Neurophysiol 2000 83: 1150–1157

    Article  CAS  Google Scholar 

  35. Bennet JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C . Proposals for the classification of the acute leukaemias. French–American–British (FAB) co-operative group Br J Haematol 1976 33: 451–458

    Article  Google Scholar 

  36. Gattei V, Bernabei PA, Pinto A, Bezzini R, Ringressi A, Formigli L, Tanini A, Attadia V, Brandi ML . Phorbol ester induced osteoclast-like differentiation of a novel human leukemic cell line (FLG 29.1) J Cell Biol 1992 116: 437–447

    Article  CAS  Google Scholar 

  37. Schönherr R, Rosati B, Hehl S, Rao VG, Arcangeli A, Olivotto M, Heinemann SH, Wanke E . Functional role of the slow activation property of ERG K+ channels Eur J Neurosci 1999 11: 753–760

    Article  Google Scholar 

  38. Hofmann G, Bernabei PA, Crociani O, Cherubini A, Guasti L, Pillozzi S, Lastraioli E, Polvani S, Bartolozzi B, Solazzo V, Gragnani L, Defilippi P, Rosati B, Wanke E, Olivotto M, Arcangeli A . HERG K+channels activation during β1 integrin-mediated adhesion to fibronectin induces an up-regulation of αvβ3 integrin in the preosteoclastic leukemia cell line FLG 29.1 J Biol Chem 2001 276: 4923–4931

    Article  CAS  Google Scholar 

  39. Lemoli RM, Tafuri A, Fortuna A, Petrucci MT, Ricciardi MR, Catani L, Rondelli D, Fogli M, Leopardi G, Ariola C, Tura S . Cycling status of CD34+ mobilized into peripheral blood of healthy donors by recombinant human granulocyte colony-stimulating factor Blood 1997 89: 1189–1196

    CAS  PubMed  Google Scholar 

  40. Traycoff CM, Abboud MR, Laver J, Clapp DW, Hoffman R, Law P, Srour EF . Human umbilical cord blood hematopoietic progenitor cells: are they the same as their adult bone marrow counterparts? Blood Cells 1994 20: 382–390

    CAS  PubMed  Google Scholar 

  41. Leitner A, Stroble H, Fischmeister G, Kurz M, Romanakis K, Haas OA, Printz D, Buchinger P, Bauer S, Gadner H . Lack of DNA synthesis among CD34+ cells in cord blood and in cytokine-mobilized blood Br J Haematol 1996 92: 255–262

    Article  CAS  Google Scholar 

  42. Vindelov LL, Christensen IJ . A review of techniques and results obtained in one laboratory by an integrated system of methods designed for routine clinical flow cytometric DNA analysis Cytometry 1990 11: 753–770

    Article  CAS  Google Scholar 

  43. Lozzio CB, Lozzio BB . Human chronic myelogenous leukemiacell-line with positive Philadelphia chromosome Blood 1975 45: 321–334

    CAS  Google Scholar 

  44. Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC . Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds Proc Natl Acad Sci USA 1978 75: 2458–2462

    Article  CAS  Google Scholar 

  45. Maniatis T, Fritsch EF, Sambrook J . Molecular Cloning: a Laboratory Manual Cold Spring Harbor Laboratory: Cold Spring Harbor 1989

    Google Scholar 

  46. Hamill OP, Marty A, Neher E, Sakmann F, Sigworth FJ . Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches Pfluegers Arch 1981 391: 85–100

    Article  CAS  Google Scholar 

  47. Faravelli L, Arcangeli A, Olivotto M, Wanke E . A HERG-like channel in rat F-11 DRG cell line: pharmacological identification and biophysical characterization J Physiol 1996 496: 13–23

    Article  CAS  Google Scholar 

  48. Oh I-H, Lau A, Eaves CJ . During ontogeny primitive (CD34+CD38−) hematopoietic cells show altered expression of a subset of genes associated with early cytokine and differentiation responses of their adult counterparts Blood 2000 96: 4160–4168

    CAS  PubMed  Google Scholar 

  49. Shirihai O, Merchav S, Attali B, Dagan D . K+ channel antisense oligodeoxynucleotides inhibit cytokine-induced expansion of human haemopoietic progenitors Eur J Physiol 1996 431: 632–638

    Article  CAS  Google Scholar 

  50. Shirihai O, Attali B, Dagan D, Merchav S . Expression of two inward rectifier potassium channels is essential for differentiation of primitive human hematopoietic progenitor cells J Cell Physiol 1998 177: 197–205

    Article  CAS  Google Scholar 

  51. Gabutti V, Pileri A, Tarocco RP, Gavosto F, Cooper EH . Proliferative potential of out of cycle leukaemic cells Nature 1969 224: 375–376

    Article  CAS  Google Scholar 

  52. Weber-Nordt RM, Egen C, Wehinger J, Ludwig W, Gouilleux-Gruart V, Mertelsmann R, Finke J . Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein–Barr virus (EBV)-related lymphoma cell lines Blood 1996 88: 809–816

    CAS  PubMed  Google Scholar 

  53. Preisler HD, Perambakam S, Li B, Hsu WT, Venugopal P, Creech S, Sivaraman S, Tanaka N . Alterations in IRF1/IRF2 expression in acute myelogenous leukemia Am J Hematol 2001 68: 23–31

    Article  CAS  Google Scholar 

  54. Vandenberg JI, Walker BD, Campbell TJ . HERG K+ channels: friend and foe Trends Pharmacol Sci 2001 22: 240–246

    Article  CAS  Google Scholar 

  55. Wang L, Zhou P, Craig RW, Lu L . Protection from cell death by mcl-1 is mediated by membrane hyperpolarization induced by K+ channel activation J Membr Biol 1999 172: 113–120

    Article  CAS  Google Scholar 

  56. Yu SP, Canzoniero L, Choi DW . Ion homeostasis and apoptosis Curr Opin Cell Biol 2001 13: 405–411

    Article  CAS  Google Scholar 

  57. Olivotto M, Arcangeli A, Carlà M, Wanke E . Electric fields at the plasma membrane level: a neglected element in the mechanism of cell signalling Bioessays 1996 18: 495–504

    Article  CAS  Google Scholar 

  58. Arcangeli A, Carlà M, Del Bene MR, Becchetti A, Wanke E, Olivotto M . Polar/apolar compounds induce leukemia cell differentiation by modulating cell surface potential Proc Natl Acad Sci USA 1993 90: 5858–5862

    Article  CAS  Google Scholar 

  59. Arcangeli A, Fontana L, Crociani O, Cherubini A, Hofmann G, Piccini E, Polvani S, D'Amico M, Carlà M, Olivotto M . A transient dephosphorylation of JAK1 and JAK2 characterises the early phase response of murine erytroleukemia cells to the differentiation inducer hexamethylenebisacetamide Leukemia 2000 14: 2112–2117

    Article  CAS  Google Scholar 

  60. Hille B . Ionic Channels of Excitable Membranes, 2nd edn Sinauer: USA 1992

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Associazione Italiana Contro le Leucemie (AIL, Firenze) to AA and AIL Comitato 30 ore to AA, from the Ministero dell'Università e Ricerca Scientifica e Tecnologica (MURST, Cofin ‘99) to AA, from the Associazione Italiana per la Ricerca sul Cancro (AIRC) to MO and to MFB and from Ente Cassa di Risparmio di Firenze (CARIFI). Thanks are due to D. Laura Gragnani (for performing some immunocytochemical experiments) and to Dr Roberto Bezzini (for providing normal peripheral blood buffy coats).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pillozzi, S., Brizzi, M., Balzi, M. et al. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia 16, 1791–1798 (2002). https://doi.org/10.1038/sj.leu.2402572

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402572

Keywords

This article is cited by

Search

Quick links