Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Chemotherapy targeting methylthioadenosine phosphorylase (MTAP) deficiency in adult T cell leukemia (ATL)

Abstract

Methylthioadenosine phosphorylase (MTAP) is an important enzyme used for the salvage of adenine and methionine. Cells lacking this enzyme are expected to be sensitive to purine synthesis inhibitors and/or methionine starvation. We reported previously that the MTAP gene is deleted in adult T cell leukemia (ATL) cells. In the present study, we expanded our series and used a real-time quantitative PCR assay for accurate diagnosis of the deletion and nine of 65 primary ATL samples (13.8%) were MTAP negative. In spite of this low incidence, ATL cells showed significantly higher sensitivity to L-alanosine, an inhibitor of de novo adenosine monophosphate (AMP) synthesis, than normal lymphocytes, suggesting that the MTAP gene is inactivated not only by deletion but also by other mechanisms. Indeed, a real-time quantitative RT-PCR assay disclosed that primary ATL cells had significantly lower MTAP mRNA expression than normal lymphocytes. Since MTAP-negative ATL cell lines also showed much higher sensitivity to L-alanosine than MTAP-positive ATL cell lines, we used these cell lines to investigate whether it is possible to develop selective therapy targeting MTAP deficiency. A substrate of MTAP, methylthioadenosine (MTA) or its substitutes rescued concanavalin A (Con A)-activated normal lymphocyte proliferation from L-alanosine toxicity. All the compounds except 5′-deoxyadenosine, however, also caused the undesirable rescue of MTAP-negative ATL cell lines. 5′-Deoxyadenosine had the desired ability to rescue hematopoietic progenitor cells without rescuing ATL cell lines. These results support the rationale for a chemotherapy regimen of L-alanosine combined with 5′-deoxyadenosine rescue in MTAP-deficient ATL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H . Adult T cell leukemia: clinical and hematologic features of 16 cases Blood 1977 50: 481–492

    CAS  PubMed  Google Scholar 

  2. Yamada Y . Phenotypic and functional analysis of leukemic cells from 16 patients with adult T-cell leukemia/lymphoma Blood 1983 61: 192–199

    CAS  PubMed  Google Scholar 

  3. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC . Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma Proc Natl Acad Sci USA 1980 77: 7415–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hinuma Y, Nagata K, Hanaoka M, Nakai M, Matsumoto T, Kinoshita K, Shirakawa S, Miyoshi I . Adult T-cell leukemia: antigen in an ATL cell lines and detection of antibodies to the antigen in human sera Proc Natl Acad Sci USA 1981 78: 6476–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yoshida M, Miyoshi I, Hinuma Y . Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease Proc Natl Acad Sci USA 1982 79: 2031–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shimoyama M members of the Lymphoma Study Group Diagnostic criteria and classification of clinical subtypes of adult T-cell leukemia-lymphoma. A report from the Lymphoma Study Group (1984–87) Br J Haematol 1991 79: 428–437

    Article  CAS  PubMed  Google Scholar 

  7. Yamada Y, Tomonaga M, Fukuda H, Hanada S, Utsunomiya A, Tara M, Sano M, Ikeda S, Takatsuki K, Kozuru M, Araki F, Kawano F, Niimi M, Tobinai K, Hotta T, Shimoyama M other members for the Lymphoma Study Group of JCOG. 1994–1996 A new G-CSF-supported combination chemotherapy, LSG15, for adult T-cell leukemia-lymphoma (ATL): Japan Clinical Oncology Group (JCOG) study 9303 Br J Haematol 2001; 113: 375–382

    Article  Google Scholar 

  8. Serrano M, Hannon GJ, Beach D . A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 Nature 1993 366: 704–707

    Article  CAS  PubMed  Google Scholar 

  9. Hannon GJ, Beach D . p15INK4B is a potential effector of TGF-β-induced cell cycle arrest Nature 1994 371: 257–261

    Article  CAS  PubMed  Google Scholar 

  10. Hatta Y, Hirama T, Miller CW, Yamada Y, Tomonaga M, Koeffler HP . Homozygous deletions of the p15 (MTS2) and p16 (CDKN2/MTS1) genes in adult T-cell leukemia Blood 1995 85: 2699–2704

    CAS  PubMed  Google Scholar 

  11. Yamada Y, Hatta Y, Murata K, Sugahara K, Ikeda S, Mine M, Maeda T, Hirakata Y, Kamihira S, Tsukasaki K, Ogawa S, Hirai H, Koeffler HP, Tomonaga M . Deletions of p15 and/or p16 genes as a poor-prognosis factor in adult T-cell leukemia J Clin Oncol 1997 15: 1778–1785

    Article  CAS  PubMed  Google Scholar 

  12. Chen ZH, Zang H, Savarese TM . Gene deletion chemoselectivity: codeletion of the genes for p16INK4, methylthioadenosine phosphorylase, and the α- and β-interferons in human pancreatic cell carcinoma lines and its implications for chemotherapy Cancer Res 1996 56: 1083–1090

    CAS  PubMed  Google Scholar 

  13. Batova A, Diccianni MB, Nobori T, Vu T, Yu J, Bridgeman L, Yu AL . Frequent deletion in the methylthioadenosine phosphorylase gene in T-cell acute lymphoblastic leukemia: strategies for enzyme-targeted therapy Blood 1996 88: 3083–3090

    CAS  PubMed  Google Scholar 

  14. Hori Y, Hori H, Yamada Y, Carrera CJ, Tomonaga M, Kamihira S, Carson DA, Nobori T . The methylthioadenosine phosphorylase gene is frequently co-deleted with the p16INK4a gene in acute type ATL Int J Cancer 1998 75: 51–56

    Article  CAS  PubMed  Google Scholar 

  15. Pegg AE, Williams-Ashman HG . Phosphate-stimulated breakdown of 5′-methylthioadenosine by rat ventral prostate Biochem J 1969 115: 241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Backlund PS Jr, Smith RA . Methionine synthesis from 5′-methylthioadenosine in rat liver J Biol Chem 1981 256: 1533–1535

    CAS  PubMed  Google Scholar 

  17. Gale GR, Schmidt GB . Mode of action of alanosine Biochem Pharmacol 1968 17: 363–368

    Article  CAS  PubMed  Google Scholar 

  18. Anandaraj SJ, Jayaram HN, Cooney DA, Tyagi AK, Han N, Thomas JH, Chitnis M, Montgomery JA . Interaction of L-alanosine (NSC 153353) with enzymes metabolizing L-aspartic acid, L-glutamic acid and their amides Biochem Pharmacol 1980 29: 227–245

    Article  CAS  PubMed  Google Scholar 

  19. Tyagi AK, Cooney DA . Identification of the anti-metabolite of L-alanosine, L-alanosyl-5-amino-4-imidazolecarboxylic acid ribonucleotide in tumors and assessment of its inhibition of adenylosuccinate synthetase Cancer Res 1980 40: 4390–4397

    CAS  PubMed  Google Scholar 

  20. Tyagi AK, Cooney DA . Biochemical pharmacology, metabolism, and mechanism of action of L-alanosine, a novel, natural antitumor agent Adv Pharmacol Chemother 1984 20: 69–121

    Article  CAS  PubMed  Google Scholar 

  21. M'soka TJ, Nishioka J, Taga A, Kato K, Kawasaki H, Yamada Y, Yu A, Komada Y, Nobori T . Detection of methylthioadenosine phosphorylase (MTAP) and p16 gene deletion in T cell acute lymphoblastic leukemia by real-time quantitative PCR assay Leukemia 2000 14: 935–940

    Article  CAS  PubMed  Google Scholar 

  22. Yamada Y, Nagata Y, Kamihira S, Tagawa M, Ichimaru M, Tomonaga M, Shiku H . IL-2-dependent ATL cell lines with phenotypes differing from the original leukemia cells Leukemia Res 1991 15: 619–625

    Article  CAS  Google Scholar 

  23. Yamada Y, Fujita M, Suzuki H, Atogami S, Sohda H, Murata K, Tsukasaki K, Momita S, Kohno T, Maeda T, Joh T, Kamihira S, Shiku H, Tomonaga M . Established IL-2 dependent double-negative (CD4− CD8−) TCRα β/CD3+ ATL cells: induction of CD4 expression Br J Haematol 1994 88: 234–241

    Article  CAS  PubMed  Google Scholar 

  24. Hata T, Fujimoto T, Tsushima H, Murata K, Tsukasaki K, Atogami S, Sohda H, Honda S, Mine M, Yamada Y, Ikeda S, Kamihira S, Tomonaga M . Multi-clonal expansion of unique human T-lymphotropic virus type-I-infected T cells with high growth potential in response to interleukin-2 in prodromal phase of adult T cell leukemia Leukemia 1999 13: 215–221

    Article  CAS  PubMed  Google Scholar 

  25. Maeda T, Yamada Y, Moriuchi R, Sugahara K, Tsuruda K, Joh T, Atogami S, Tsukasaki K, Tomonaga M, Kamihira S . Fas gene mutation in the progression of adult T cell leukemia J Exp Med 1999 189: 1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nobori T, Takabayashi K, Tran P, Orvis L, Batova A, Yu AL, Carson DA . Genomic cloning of methylthioadenosine phosphorylase: a purine metabolic enzyme deficient in multiple different cancers Proc Natl Acad Sci USA 1996 93: 6203–6208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kamatani N, Nelson-Rees WA, Carson DA . Selective killing of human malignant cell lines deficient in methylthioadenosine phosphorylase, a purine metabolic enzyme Proc Natl Acad Sci USA 1981 78: 1219–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fitchen JH, Riscoe MK, Dana BW, Lawrence HJ, Ferro AJ . Methylthioadenosine phosphorylase deficiency in human leukemias and solid tumors Cancer Res 1986 46: 5409–5412

    CAS  PubMed  Google Scholar 

  29. Nobori T, Karras JG, Della Ragione F, Waltz TA, Chen PP, Carson DA . Absence of methylthioadenosine phosphorylase in human gliomas Cancer Res 1991 51: 3193–3197

    CAS  PubMed  Google Scholar 

  30. Nobori T, Szinai I, Amox D, Parker B, Olopade OI, Buchhagen DL, Carson DA . Methylthioadenosine phosphorylase deficiency in human non-small cell lung cancers Cancer Res 1993 53: 1098–1101

    CAS  PubMed  Google Scholar 

  31. Dosik GM, Stewart D, Valdivieso M, Burgess MA, Bodey GP . Phase I study of L-alanosine using a daily ×3 schedule Cancer Treat Rep 1982 66: 73–76

    CAS  PubMed  Google Scholar 

  32. Goldsmith MA, Ohnuma T, Spigelman M, Greenspan EM, Holland JF . Phase I study of L-alanosine (NSC 153353) Cancer 1983 51: 378–380

    Article  CAS  PubMed  Google Scholar 

  33. Weick JK, Tranum BL, Morrison FS . The treatment of acute leukemia with continuous infusion L-alanosine Invest New Drugs 1983 1: 249–251

    CAS  PubMed  Google Scholar 

  34. Creagan ET, Schutt AL, Ingle JN, O'Fallon JR . Phase II clinical trial of L-alanosine in advanced upper aerodigestive cancer Cancer Treat Rep 1983 67: 1047

    CAS  PubMed  Google Scholar 

  35. O'Connell MJ, Rubin J, Schutt AJ, Moertel CG, Kvols LK . Clinical trial of PALA and L-alanosine in advanced colorectal carcinoma Cancer Treat Rep 1983 67: 1141–1142

    CAS  PubMed  Google Scholar 

  36. Batova A, Diccianni MB, Omura-Minamisawa M, Yu J, Carrera CJ, Bridgeman LJ, Kung FH, Pullen J, Amylon MD, Yu AL . Use of alanosine as a methylthioadenosine phosphorylase-selective therapy for T-cell acute lymphoblastic leukemia in vitro Cancer Res 1999 59: 1492–1497

    CAS  PubMed  Google Scholar 

  37. Hori H, Tran P, Carrera CJ, Hori Y, Rosenbach MD, Carson DA, Nobori T . Methylthioadenosine phosphorylase cDNA transfection alters sensitivity to depletion of purine and methionine in A549 lung cancer cells Cancer Res 1996 56: 5653–5658

    CAS  PubMed  Google Scholar 

  38. Gonzalez M, Mateos MV, Garcia-Sanz R, Balanzategui A, Lopez-Perez R, Chillon MC, Gonzalez D, Alaejos I, San Miguel JF . De novo methylation of tumor suppressor gene p16/INK4a is a frequent finding in multiple myeloma patients at diagnosis Leukemia 2000 14: 183–187

    Article  CAS  PubMed  Google Scholar 

  39. Yu J, Batova A, Shao L, Carrera CJ, Yu AL . Presence of methylthioadenosine phosphorylase (MTAP) in hematopoietic stem/progenitor cells: its therapeutic implication for MTAP (−) malignancies Clin Cancer Res 1997 3: 433–438

    CAS  PubMed  Google Scholar 

  40. Chabez M . Alternative therapies, SAMe: S-adenosylmethionine Am J Health-Syst Pharm 2000 57: 119–123

    Google Scholar 

Download references

Acknowledgements

We thank Mr K Nohda, Ms T Hayashi and Ms N Dateki for their technical assistance. This study was supported by JSPS Research Fellowships for Young Scientists (HH) and research grants (YY, 10670956) from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harasawa, H., Yamada, Y., Kudoh, M. et al. Chemotherapy targeting methylthioadenosine phosphorylase (MTAP) deficiency in adult T cell leukemia (ATL). Leukemia 16, 1799–1807 (2002). https://doi.org/10.1038/sj.leu.2402570

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402570

Keywords

This article is cited by

Search

Quick links