Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Selective apoptosis of tandemly duplicated FLT3-transformed leukemia cells by Hsp90 inhibitors

Abstract

An internal tandem duplication of the juxtamembrane (JM) domain of FLT3, a family of ligand-activated receptor tyrosine kinases, has been found in 20% of cases of acute myeloid leukemia (AML), and this mutation is correlated with leukocytosis and a poor prognosis. As a therapeutic approach, we previously reported that herbimycin A (HA) inhibited the growth of tandemly duplicated FLT3 (TDFLT3)-transformed cells (Leukemia 2000; 14: 374). Here, we have investigated the mechanism behind the cytotoxicity of HA, an ansamycin derivative which is now known to target Hsp90. The treatment with HA or another Hsp90 inhibitor, radicicol, induced selective apoptosis in TDFLT3-transformed 32D cells (TDFLT3/32D). The tyrosine-phosphorylation of TDFLT3 was inhibited by HA, whereas FLT3 ligand-induced phosphorylation of wild-type FLT3 (WtFLT3) was not. The downstream signal molecules MAPK, Akt and STAT5a were also dephosphorylated by HA in TDFLT3/32D. Immunoprecipitation analysis showed that TDFLT3 but not WtFLT3 formed a complex with Hsp90, and that the HA treatment dissociated TDFLT3 from the Hsp90 chaperone complex. These findings imply that targeting of Hsp90 will facilitate the development of anti-TDFLT3 therapy, and that Hsp90 is closely involved in the oncogenic activation of FLT3.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gibbs JB . Mechanism-based target identification and drug discovery in cancer research Science 2000 287: 1969–1973

    Article  CAS  PubMed  Google Scholar 

  2. Warrell RP, Wang ZY, Degos L . Acute promyelocytic leukemia N Engl J Med 1993 329: 177–189

    Article  CAS  PubMed  Google Scholar 

  3. Druker BJ, Lydon NB . Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia J Clin Invest 2000 105: 3–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lyman SD, James L, Vanden Bos T, de Vries P, Brasel K, Gliniak B, Hollingsworth LT, Picha KS, McKenna HJ, Splett RR . Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells Cell 1993 75: 1157–1167

    Article  CAS  PubMed  Google Scholar 

  5. Rosnet O, Schiff C, Pebusque MJ, Marchetto S, Tonnelle C, Toiron Y, Birg F, Birnbaum D . Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells Blood 1993 82: 1110–1119

    CAS  PubMed  Google Scholar 

  6. Carow CE, Levenstein, Kaufmann SH, Chen J, Amin S, Rockwell P, Witte L, Borowitz MJ, Civin CI, Small D . Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias Blood 1996 87: 1089–1096

    CAS  PubMed  Google Scholar 

  7. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, Sonoda Y, Fujimoto T, Misawa S . Internal tandem duplication of the flt3 gene found in acute myeloid leukemia Leukemia 1996 10: 1911–1918

    CAS  PubMed  Google Scholar 

  8. Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, Sonoda Y, Abe T, Kahsima K, Matsuo Y, Naoe T . Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines Leukemia 1997 11: 1605–1609

    Article  CAS  PubMed  Google Scholar 

  9. Kiyoi H, Naoe T, Yokota S, Nakao M, Minami S, Kuriyama K, Takeshita A, Saito K, Hasegawa S, Shimodaira S, Tamura J, Shimazaki C, Matsue K, Kobayashi H, Arima N, Suzuki R, Morishita H, Saito H, Ueda R, Ohno R . Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho) Leukemia 1997 11: 1447–1452

    Article  CAS  PubMed  Google Scholar 

  10. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, Asou N, Kuriyama K, Jinnai I, Shimazaki C, Akiyama H, Saito K, Oh H, Motoji T, Omoto E, Saito H, Ohno R, Ueda R . Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia Blood 1999 93: 3074–3080

    CAS  PubMed  Google Scholar 

  11. Rombouts WJ, Blokland I, Lowenberg B, Ploemacher RE . Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene Leukemia 2000 14: 675–683

    Article  CAS  PubMed  Google Scholar 

  12. Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H, Naoe T . Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product Leukemia 1998 12: 1333–1337

    Article  CAS  PubMed  Google Scholar 

  13. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H, Naoe T . Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines Oncogene 2000 19: 624–631

    Article  CAS  PubMed  Google Scholar 

  14. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Muller C, Gruning W, Kratz-Albers K, Serve S, Steur C, Buchner T, Kienast J, Kanakura Y, Berdel WE, Serve H . Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways Blood 2000 96: 3907–3914

    CAS  PubMed  Google Scholar 

  15. Zhao M, Kiyoi H, Yamamoto Y, Ito M, Towatari M, Omura S, Kitamura T, Ueda R, Saito H, Naoe T . In vivo treatment of mutant FLT3-transformed murine leukemia with a tyrosine kinase inhibitor Leukemia 2000 14: 374–378

    Article  CAS  PubMed  Google Scholar 

  16. Uehara Y, Murakami Y, Mizuno S, Kawai S . Inhibition of transforming activity of tyrosine kinase oncogenes by herbimycin A Virology 1988 164: 294–298

    Article  CAS  PubMed  Google Scholar 

  17. Honma Y, Okabe J, Hozumi M, Uehara Y, Mizuno S . Induction of erythroid differentiation of K562 human leukemic cells by herbimycin A, an inhibitor of tyrosine kinase activity Cancer Res 1989 49: 331–334

    CAS  PubMed  Google Scholar 

  18. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM . Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation Proc Natl Acad Sci USA 1994 91: 8324–8328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mimnaugh EG, Chavany C, Neckers L . Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin J Biol Chem 1996 271: 22796–22801

    Article  CAS  PubMed  Google Scholar 

  20. Xu W, Mimnaugh E, Rosser MF, Nicchitta C, Marcu M, Yarden Y, Neckers L . Sensitivity of mature ErbB2 to geldanamycin is conferred by its kinase domain and is mediated by chaperone protein Hsp90 J Biol Chem 2000 8: 3702–3708

    Google Scholar 

  21. Whitesell L, Shifrin SD, Schwab G, Neckers L . Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition Cancer Res 1992 52: 1721–1728

    CAS  PubMed  Google Scholar 

  22. Schulte TW, Blagosklonny MV, Ingui C, Neckers L . Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association J Biol Chem 1995 270: 24585–24588

    Article  CAS  PubMed  Google Scholar 

  23. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP . Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent Cell 1997 89: 239–250

    Article  CAS  PubMed  Google Scholar 

  24. Neckers L, Schulte TW, Mimnaugh E . Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity Invest New Drugs 1999 17: 361–373

    Article  CAS  PubMed  Google Scholar 

  25. Jolly C, Morimoto RI . Role of the heat shock response and molecular chaperones in oncogenesis and cell death J Natl Cancer Inst 2000 92: 1564–1572

    Article  CAS  PubMed  Google Scholar 

  26. Segnitz B, Gehring U . The function of steroid hormone receptors is inhibited by the hsp90-specific compound geldanamycin J Biol Chem 1997 272: 18694–18701

    Article  CAS  PubMed  Google Scholar 

  27. An WG, Schulte TW, Neckers LM . The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome Cell Growth Differ 2000 11: 355–360

    CAS  PubMed  Google Scholar 

  28. Shiotsu Y, Neckers LM, Wortman I, An WG, Schulte TW, Soga S, Murakata C, Tamaoki T, Akinaga S . Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G(1) phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-Abl with Hsp90 complex Blood 2000 96: 2284–2291

    CAS  PubMed  Google Scholar 

  29. Blagosklonny MV, Fojo T, Bhalla K, Kim JS, Trepel JB, Figg WD, Rivera Y, Neckers LM . The Hsp90 inhibitor geldanamycin selectively sensitizes Bcr-Abl-expressing leukemia cells tp cytotoxic chemotherapy Leukemia 2001 15: 1537–1543

    Article  CAS  PubMed  Google Scholar 

  30. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, Akiyama H, Saito K, Nishimura M, Moyoji T, Shinagawa K, Takeshita A, Saito H, Ueda R, Ohno R, Naoe T . Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies Blood 2001 97: 2434–2439

    Article  CAS  PubMed  Google Scholar 

  31. Schulte TW, Akinaga S, Soga S, Sullivan W, Stensgard B, Toft D, Neckers LM . Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin Cell Stress Chaperones 1998 3: 100–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sharma SV, Agatsuma T, Nakano H . Targeting of the protein chaperone, HSP90, by the transformation suppressing agent, radicicol Oncogene 1998 16: 2639–2645

    Article  CAS  PubMed  Google Scholar 

  33. Rutherford SL, Lindquist S . Hsp90 as a capacitor for morphological evolution Nature 1998 396: 336–342

    Article  CAS  PubMed  Google Scholar 

  34. Mui AL, Wakao H, Kinoshita T, Kitamura T, Miyajima A . Suppression of interleukin-3-induced gene expression by a C-terminal truncated Stat5: role of Stat5 in proliferation EMBO J 1996 15: 2425–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Blagosklonny MV, Schulte TW, Nguyen P, Mimnaugh EG, Trepel J, Neckers L . Taxol induction of p21WAF1 and p53 requires c-raf-1 Cancer Res 1995 55: 4623–4626

    CAS  PubMed  Google Scholar 

  36. Mackarehtschian K, Hardin JD, Moore KA, Boast S, Goff SP, Lemischka IR . Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors Immunity 1995 3: 147–161

    Article  CAS  PubMed  Google Scholar 

  37. Lyman SD, Jacobsen SE . c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities Blood 1998 91: 1101–1134

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in Aid from the Japanese Ministry of Health, Labor and Welfare, the Ministry of education, Culture, Sports, Science and Technology, Novartis Foundation for the Promotion of Science and Uehara Memorial Foundation. We thank Dr Oliver Rosnet, Dr Toshio Kitamura and Kirin Brewery Co Ltd for providing us with materials, and M Agr Manabu Ninomiya, Ms Yoko Kudo and Ms Yoko Tagawa for technical and secretarial assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minami, Y., Kiyoi, H., Yamamoto, Y. et al. Selective apoptosis of tandemly duplicated FLT3-transformed leukemia cells by Hsp90 inhibitors. Leukemia 16, 1535–1540 (2002). https://doi.org/10.1038/sj.leu.2402558

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402558

Keywords

This article is cited by

Search

Quick links