Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight
  • Published:

Spotlight on Stem Cells

Unique molecular and cellular features of acute myelogenous leukemia stem cells

Abstract

It is well known in the field of acute myelogenous leukemia (AML) that many different translocations and genetic aberrancies are found with the various forms of the disease. Indeed, specific translocations are often associated with disease subtypes that manifest themselves through the accumulation of immature myeloid cells at varying stages of differentiation. Moreover, the differentiation state of myeloid blast populations has been utilized as a means of categorizing different AML subtypes (French, American, British, or FAB classification system). Thus, the notion that AML is a family of related but distinct diseases is a common view. Interestingly, however, studies in recent years that have formalized the concept of a leukemic stem cell (LSC) have also begun to define shared developmental, cellular and molecular features amongst the malignant stem cells that give rise to different AML subtypes. Moreover, some of these conserved features appear to be unique to the leukemia stem/progenitor cell population, and are not found in normal hematopoietic stem cells (HSCs). This article will summarize data emerging from the study of LSCs and suggest how distinct molecular and cellular characteristics of the LSC population may provide new opportunities for AML therapy.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Lowenberg B, Downing JR, Burnett A . Acute myeloid leukemia N Engl J Med 1999 341: 1051–1062

    Article  CAS  PubMed  Google Scholar 

  2. Dash A, Gilliland DG . Molecular genetics of acute myeloid leukaemia Best Pract Res Clin Haematol 2001 14: 49–64

    Article  CAS  PubMed  Google Scholar 

  3. Killmann SA . Preleukemia: does it exist? Nouv Rev Fr Hematol Blood Cells 1976 17: 81–105

    CAS  PubMed  Google Scholar 

  4. Killmann SA . Acute leukaemia: development, remission/relapse pattern, relationship between normal and leukaemic haemopoiesis, and the ‘sleeper-to-feeder’ stem cell hypothesis Baillières Clin Haematol 1991 4: 577–598

    Article  CAS  PubMed  Google Scholar 

  5. Griffin JD, Lowenberg B . Clonogenic cells in acute myeloblastic leukemia Blood 1986 68: 1185–1195

    CAS  PubMed  Google Scholar 

  6. Lowenberg B, Terpstra W . Maturation hierarchy of leukemic stem cells Stem Cells 1998 16: 85–88 discussion 89

    Article  PubMed  Google Scholar 

  7. Wouters R, Lowenberg B . On the maturation order of AML cells: a distinction on the basis of self-renewal properties and immunologic phenotypes Blood 1984 63: 684–689

    CAS  PubMed  Google Scholar 

  8. Keinanen M, Griffin JD, Bloomfield CD, Machnicki J, de la Chapelle A . Clonal chromosomal abnormalities showing multiple-cell-lineage involvement in acute myeloid leukemia N Engl J Med 1988 318: 1153–1158

    Article  CAS  PubMed  Google Scholar 

  9. Brendel C, Neubauer A . Characteristics and analysis of normal and leukemic stem cells: current concepts and future directions Leukemia 2000 14: 1711–1717

    Article  CAS  PubMed  Google Scholar 

  10. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE . A cell initiating human acute myeloid leukaemia after transplantation into SCID mice Nature 1994 367: 645–648

    Article  CAS  PubMed  Google Scholar 

  11. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell Nat Med 1997 3: 730–737

    Article  CAS  PubMed  Google Scholar 

  12. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ . Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo Blood 1997 89: 3104–3112

    CAS  PubMed  Google Scholar 

  13. Blair A, Hogge DE, Sutherland HJ . Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(−)/HLA-DR− Blood 1998 92: 4325–4335

    CAS  PubMed  Google Scholar 

  14. Blair A, Sutherland HJ . Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117) Exp Hematol 2000 28: 660–671

    Article  CAS  PubMed  Google Scholar 

  15. Sutherland HJ, Blair A, Zapf RW . Characterization of a hierarchy in human acute myeloid leukemia progenitor cells Blood 1996 87: 4754–4761

    CAS  PubMed  Google Scholar 

  16. Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, Meyerrose T, Rossi R, Grimes B, Rizzieri DA, Luger SM, Phillips GL . The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells Leukemia 2000 14: 1777–1784

    Article  CAS  PubMed  Google Scholar 

  17. Weiner LM . Monoclonal antibody therapy of cancer Semin Oncol 1999 26: 43–51

    CAS  PubMed  Google Scholar 

  18. Appelbaum FR . Antibody-targeted therapy for myeloid leukemia Semin Hematol 1999 36: 2–8

    CAS  PubMed  Google Scholar 

  19. Terpstra W, Ploemacher RE, Prins A, van Lom K, Pouwels K, Wognum AW, Wagemaker G, Lowenberg B, Wielenga JJ . Fluorouracil selectively spares acute myeloid leukemia cells with long-term growth abilities in immunodeficient mice and in culture Blood 1996 88: 1944–1950

    CAS  PubMed  Google Scholar 

  20. Holyoake T, Jiang X, Eaves C, Eaves A . Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia Blood 1999 94: 2056–2064

    CAS  PubMed  Google Scholar 

  21. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM, Jordan CT . Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells Blood 2001 98: 2301–2307

    Article  CAS  PubMed  Google Scholar 

  22. Guzman ML, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM, Phillips GL, Jordan CT . Expression of tumor-suppressor genes interferon regulatory factor 1 and death-associated protein kinase in primitive acute myelogenous leukemia cells Blood 2001 97: 2177–2179

    Article  CAS  PubMed  Google Scholar 

  23. Mayo MW, Baldwin AS . The transcription factor NF-kappaB: control of oncogenesis and cancer therapy resistance Biochim Biophys Acta 2000 1470: M55–62

    CAS  PubMed  Google Scholar 

  24. Jones DR, Broad RM, Madrid LV, Baldwin AS, Mayo MW . Inhibition of NF-kappaB sensitizes non-small cell lung cancer cells to chemotherapy-induced apoptosis Ann Thorac Surg 2000 70: 930–936 discussion 936–937

    Article  CAS  PubMed  Google Scholar 

  25. Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ . The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells Clin Cancer Res 1999 5: 119–127

    CAS  PubMed  Google Scholar 

  26. Shattuck-Brandt RL, Richmond A . Enhanced degradation of I-kappaB alpha contributes to endogenous activation of NF-kappaB in Hs294T melanoma cells Cancer Res 1997 57: 3032–3039

    CAS  PubMed  Google Scholar 

  27. Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W, Royer HD, Grinstein E, Greiner A, Scheidereit C, Dorken B . Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells J Clin Invest 1997 100: 2961–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C . Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells Leukemia 2000 14: 399–402

    Article  CAS  PubMed  Google Scholar 

  29. Devalaraja MN, Wang DZ, Ballard DW, Richmond A . Elevated constitutive IkappaB kinase activity and IkappaB-alpha phosphorylation in Hs294T melanoma cells lead to increased basal MGSA/GRO-alpha transcription Cancer Res 1999 59: 1372–1377

    CAS  PubMed  Google Scholar 

  30. Epinat JC, Gilmore TD . Diverse agents act at multiple levels to inhibit the Rel/NF-kappaB signal transduction pathway Oncogene 1999 18: 6896–6909

    Article  CAS  PubMed  Google Scholar 

  31. Gilliland DG . Hematologic malignancies Curr Opin Hematol 2001 8: 189–191

    Article  CAS  PubMed  Google Scholar 

  32. Cuenco GM, Ren R . Cooperation of BCR-ABL and AML1/MDS1/EVI1 in blocking differentiation and rapid induction of an acute myelogenous leukemia Oncogene 2001 20: 8236–8248

    Article  CAS  PubMed  Google Scholar 

  33. Lavau C, Szilvassy SJ, Slany R, Cleary ML . Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL EMBO J 1997 16: 4226–4237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lavau C, Du C, Thirman M, Zeleznik-Le N . Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia EMBO J 2000 19: 4655–4664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lavau C, Luo RT, Du C, Thirman MJ . Retrovirus-mediated gene transfer of MLL-ELL transforms primary myeloid progenitors and causes acute myeloid leukemias in mice Proc Natl Acad Sci USA 2000 97: 10984–10989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cuenco GM, Nucifora G, Ren R . Human AML1/MDS1/EVI1 fusion protein induces an acute myelogenous leukemia (AML) in mice: a model for human AML Proc Natl Acad Sci USA 2000 97: 1760–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kroon E, Thorsteinsdottir U, Mayotte N, Nakamura T, Sauvageau G . NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice EMBO J 2001 20: 350–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thorsteinsdottir U, Krosl J, Kroon E, Haman A, Hoang T, Sauvageau G . The oncoprotein E2A-Pbx1a collaborates with Hoxa9 to acutely transform primary bone marrow cells Mol Cell Biol 1999 19: 6355–6366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kamps MP, Baltimore D . E2A-Pbx1, the t(1;19) translocation protein of human pre-B-cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice Mol Cell Biol 1993 13: 351–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Guzman CG, Warren A, Zhang Z, Gartland L, Erickson P, Drabkin H, Hiebert S, Klug CA . Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation 2001 (in press)

  41. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G . Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b EMBO J 1998 17: 3714–3725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kiyoi H, Towatari M, Yokota S, Hamaguchi M, Ohno R, Saito H, Naoe T . Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product Leukemia 1998 12: 1333–1337

    Article  CAS  PubMed  Google Scholar 

  43. Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, Sonoda Y, Abe T, Kahsima K, Matsuo Y, Naoe T . Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines Leukemia 1997 11: 1605–1609

    Article  CAS  PubMed  Google Scholar 

  44. Levis M, Tse KF, Smith BD, Garrett E, Small D . A FLT3 tyrosine kinase inhibitor is selectively cytotoxic to acute myeloid leukemia blasts harboring FLT3 internal tandem duplication mutations Blood 2001 98: 885–887

    Article  CAS  PubMed  Google Scholar 

  45. Tse KF, Novelli E, Civin CI, Bohmer FD, Small D . Inhibition of FLT3-mediated transformation by use of a tyrosine kinase inhibitor Leukemia 2001 15: 1001–1010

    Article  CAS  PubMed  Google Scholar 

  46. Li S, Gillessen S, Tomasson MH, Dranoff G, Gilliland DG, Van Etten RA . Interleukin 3 and granulocyte-macrophage colony-stimulating factor are not required for induction of chronic myeloid leukemia-like myeloproliferative disease in mice by BCR/ABL Blood 2001 97: 1442–1450

    Article  CAS  PubMed  Google Scholar 

  47. Tomasson MH, Williams IR, Li S, Kutok J, Cain D, Gillessen S, Dranoff G, Van Etten RA, Gilliland DG . Induction of myeloproliferative disease in mice by tyrosine kinase fusion oncogenes does not require granulocyte-macrophage colony-stimulating factor or interleukin-3 Blood 2001 97: 1435–1441

    Article  CAS  PubMed  Google Scholar 

  48. Rhoades KL, Hetherington CJ, Harakawa N, Yergeau DA, Zhou L, Liu LQ, Little MT, Tenen DG, Zhang DE . Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model Blood 2000 96: 2108–2115

    CAS  PubMed  Google Scholar 

  49. Huettner CS, Zhang P, Van Etten RA, Tenen DG . Reversibility of acute B-cell leukaemia induced by BCR-ABL1 Nat Genet 2000 24: 57–60

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Leukemia and Lymphoma Society, the American Cancer Society, and the McDowell Cancer Foundation. I am grateful to Drs Gary Van Zant, Deborah Echlin, Monica Guzman, Vivienne Rebel, Gary Gilliland and Christopher Klug for critical reading of the manuscript, sharing unpublished data, and many helpful discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, C. Unique molecular and cellular features of acute myelogenous leukemia stem cells. Leukemia 16, 559–562 (2002). https://doi.org/10.1038/sj.leu.2402446

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402446

Keywords

This article is cited by

Search

Quick links