Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Chronic Lymphocytic Leukemia (CLL)

CD5-induced apoptosis of B cells in some patients with chronic lymphocytic leukemia

Abstract

Although B chronic lymphocytic leukemia (B-CLL) is characterized by prolonged survival of CD5+ B cells in vivo, these cells apoptose spontaneously in vitro. The effect of CD5 ligation on apoptosis was studied in 27 newly diagnosed patients with B-CLL, in relation to the expression of surface IgM (sIgM), CD79b, CD38, CD72 and CD19. B cells from 15 patients (group I) were resistant to anti-CD5-induced apoptosis, whereas apoptosis above spontaneous levels was seen in the remaining 12 studied (group II). Group II was then subdivided on the basis of differences in the time required to reach maximum apoptosis: whilst B cells from seven patients underwent apoptosis by 18 h, those from the remaining five needed 36 h to apoptose. The expression of sIgM, CD5, CD79b and CD38 was higher in group II than group I, suggesting that signaling for apoptosis might operate via CD79, and that CD38 expression was required. As shown by flow cytometry and confirmed by Western blotting, apoptosis was associated with a decrease in the ratios of Bcl-2/Bax and BclXL/Bax, due to an increase in the level of Bax, but no change in that of Bcl-2. This heterogeneous apoptotic response to CD5 ligation offers an explanation for the incomplete success of anti-CD5 monoclonal therapy, and might help identify patients who would respond to such treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Binet JL . Emerging therapies and future directions in CLL-monoclonal antibodies, vaccines and gene therapy Hematol Cell Ther 2000 42: 49–51

    Article  CAS  Google Scholar 

  2. Kipps TJ . Chronic lymphocytic leukemia Curr Opin Hematol 2000 7: 223–234

    Article  CAS  Google Scholar 

  3. Dighiero G, Binet JL . When and how to treat chronic lymphocytic leukemia? N Engl J Med 2000 343: 1750–1757

    Article  Google Scholar 

  4. Klein A, Miera O, Bauer O, Golfier S, Shriever F . Chemosensitivity of B cell chronic lymphocytic leukemia and correlated expression of proteins regulating apoptosis, cell cycle and DNA repair Leukemia 2000 14: 40–46

    Article  CAS  Google Scholar 

  5. Johnson DE . Programmed cell death regulation : basic mechanisms and therapeutic opportunities Leukemia 2000 14: 1340–1344

    Article  CAS  Google Scholar 

  6. Caligaris-Cappio F, Hamblin TJ . B-cell chronic lymphocytic leukemia: a bird of a different feather J Clin Oncol 1999 17: 399–408

    Article  CAS  Google Scholar 

  7. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S, Wang HG, Zhang X, Bulbrich F, Croce CM, Rai K, Hines J, Reed JC . Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses Blood 1998 91: 3379–3389

    CAS  PubMed  Google Scholar 

  8. Collins RJ, Verschuer LA, Harmon BV, Prentice RL, Pope JH, Kerr JFR . Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro Br J Haematol 1989 71: 343–350

    Article  CAS  Google Scholar 

  9. Lydyard PM, Jewell AP, Jamin C, Youinou P . CD5+ B cells and B-cell malignancy Curr Opin Hematol 1999 6: 30–36

    Article  CAS  Google Scholar 

  10. Zupo S, Isnardi L, Megna M, Massara R, Malavasi F, Dono M, Cosulich E, Ferrarini M . CD38 expression distinguishes two groups of B-cell chronic lymphocytic leukemias with different responses to anti-IgM antibodies and propensity to apoptosis Blood 1996 88: 1365–1374

    CAS  PubMed  Google Scholar 

  11. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated IgV (H) genes are associated with a more aggressive form of chronic lymphocytic leukemia Blood 1999 94: 1848–1854

    CAS  PubMed  Google Scholar 

  12. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, Buchbinder A, Budman D, Dittmar K, Kolits J, Lichtman SM, Schulman P, Vinciguerra VP, Rai KR, Ferrarini M, Chiorazzi N . IgV gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia Blood 1999 94: 1840–1847

    CAS  PubMed  Google Scholar 

  13. Thompson AA, Do HN, Saxon A, Wall R . Widespread B29 (CD79b) gene defects and loss of expression in chronic lymphocytic leukemia Leuk Lymphoma 1999 32: 561–569

    Article  CAS  Google Scholar 

  14. Zomas AP, Matutes E, Morilla R, Owusu-Ankomah K, Seon BK, Catovsky D . Expression of immunoglobulin-associated protein B29 in B cell disorders with the monoclonal antibody SN8 (CD79b) Leukemia 1996 10: 1966–1970

    CAS  PubMed  Google Scholar 

  15. Thompson AA, Talley JA, Do HN, Kagan HL, Kunkel L, Berenson J, Cooper MD, Saxon A, Wall R . Aberrations of the B-cell receptor B29 (CD79b) gene in chronic lymphocytic leukemia Blood 1997 90: 1387–1394

    CAS  PubMed  Google Scholar 

  16. Alfarano A, Indraccalo S, Circosta P, Minuzzo S, Vallario A, Zamarchi R, Fregonese A, Calderazzo F, Faldella A, Aragno M, Camaschella C, Amadori A, Caligaris-Cappio F . An alternatively spliced form of CD79b gene may account for altered B-cell receptor expression in B-chronic lymphocytic leukemia Blood 1999 93: 2327–2335

    CAS  PubMed  Google Scholar 

  17. Lankester AC, van Schijndel GMW, Cordell JL, van Noesel CJM, van Lier RAW . CD5 is associated with the human B cell antigen receptor complex Eur J Immunol 1994 24: 812–816

    Article  CAS  Google Scholar 

  18. Jamin C, Lydyard PM, Le Corre R, Youinou P . CD5+B cells differential capping and modulation of IgM and CD5 Scand J Immunol 1996 43: 73–80

    Article  CAS  Google Scholar 

  19. Tarakkovshy A . Bar Mitzvah for B-1 cells: how will they grow up? J Exp Med 1997 185: 981–984

    Article  Google Scholar 

  20. Matutes E, Catovsky D . The value of scoring systems for the diagnosis of biphenotypic leukemia and mature B-cell disorders Leuk Lymphoma 1994 13 (Suppl. 1): 11–14

    Article  Google Scholar 

  21. Binet JL, Auquier A, Dighiero G, Chastang C, Piquet H, Goasguen J, Vaugier G, Potron G, Colona P, Oberling F, Thomas M, Tchernia G, Jacquillat C, Boivin P, Lesty C, Duault MT, Monconduit M, Belabbes S, Gremy F . A new prognostic classification of chronic lymphocytic leukemia derived multivariate survival analysis Cancer 1981 48: 198–206

    Article  CAS  Google Scholar 

  22. MacKenzie LE, Lydyard PM . Epitope mapping of the CD5 molecule. In: Därken B, Gilks WR, Riefer EP, Schmidt RE, Stein H, von dem Borne AEGKr (eds) Leucocyte Typing IV. White Cell Differentiation Antigens Oxford University Press: Oxford 1989 pp 336–337

    Google Scholar 

  23. Robertson LE, Plunkett W, UncConnel K, Keating MJ, McConnell TJ . Bcl-2 expression in chronic lymphocytic leukemia and its correlation with the induction of apoptosis and clinical outcome Leukemia 1996 10: 456–459

    CAS  PubMed  Google Scholar 

  24. Cheson BD, Bennett JM, Rai KR . Guidelines for clinical protocols for chronic lymphocytic leukemia: recommendation of the National Cancer Institute-sponsored Working Group Am J Hematol 1988 29: 152–163

    Article  CAS  Google Scholar 

  25. International Workshop on Chronic Lymphocytic Leukemia. Chronic lymphocytic leukemia: recommandations for diagnosis, staging, and response criteria Ann Intern Med 1989 110: 236–238

  26. Dohner H, Stilgenbawer S, Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M, Lichter P . Genomic aberrations and survival in chronic lymphocytic leukemia N Engl J Med 2000 343: 1910–1916

    Article  CAS  Google Scholar 

  27. Gordon MS, Kato RM, Lansignan F, Thompson AA, Wall R, Rawlings DJ . Aberrant B cell receptor signaling for B29 (IgB, CD79b) gene mutations of chronic lymphocytic leukemia B cells Proc Natl Acad Sci USA 2000 97: 5504–5509

    Article  CAS  Google Scholar 

  28. Perez-Villaar JJ, Whitney GS, Bowen MA, Hewgill DH, Aruffo AA, Kanner SB . CD5 negatively regulates the T-cell antigen receptor signal transduction pathway: involvement of SH2-containing phosphotyrosine phosphatase SHP-1 Mol Cell Biol 1999 19: 2903–2912

    Article  Google Scholar 

  29. Pascual V, Liu YJ, Magalski A, de Bouteiller O, Banchereau J, Capra JD . Analysis of somatic mutation in five B cell subsets of human tonsil J Exp Med 1994 180: 329–339

    Article  CAS  Google Scholar 

  30. Youinou P, Jamin C, Lydyard PM . CD5 expression in human B-cell populations Immunol Today 1999 20: 312–316

    Article  CAS  Google Scholar 

  31. Dighiero G, Kipps T, Schroeder HW, Chiorazzi N, Stevenson F, Silberstein LE, Caligaris-Cappio F, Ferrarini M . What is the CLL B-lymphocyte? Leuk Lymphoma 1996 22 (Suppl. 2): 13–39

    Article  Google Scholar 

  32. Caligaris-Cappio F, Gottardi D, Alfarano A, Stacchini A, Gregoretti MG, Ghia P, Bertero MT, Novarino A, Bergui L . The nature of the B lymphocyte in B-chronic lymphocytic leukemia Blood Cells 1993 19: 601–613

    CAS  PubMed  Google Scholar 

  33. Jamin C, Le Corre R, Lydyard PM, Youinou P . Anti-CD5 extends the proliferative response of human CD5+ B cells activated with anti-IgM and interleukin-2 Eur J Immunol 1996 26: 57–62

    Article  CAS  Google Scholar 

  34. Pers JO, Jamin C, Le Corre R, Lydyard PM, Youinou P . Ligation of CD5 on resting B cells, but not resting T cells, results in apoptosis Eur J Immunol 1998 28: 4170–4176

    Article  CAS  Google Scholar 

  35. Hashimoto S, Chiorazzi N, Gregersen PK . Alternative splicing of CD79b (Igα/mb-1) and CD79b (Igβ/B29) RNA transcripts in human B cells Mol Immunol 1995 32: 651–659

    Article  CAS  Google Scholar 

  36. Koyama M, Nakamura T, Higashihara M, Herren B, Kuwata S, Shibata Y, Okumara K, Kurokawa K . The novel variants of mb-1 and B29 transcripts generated by alternative mRNA splicing Immunol Lett 1995 47: 151–156

    Article  CAS  Google Scholar 

  37. Sen G, Bikah G, Venkataraman C, Bondada S . Negative regulation of antigen receptor-mediated signaling by constitutive association of CD5 with the SHP-1 protein tyrosine phosphatase in B-1 B cells Eur J Immunol 1999 29: 3319–3328

    Article  CAS  Google Scholar 

  38. Daniel PT . Dissecting the pathways to death Leukemia 2000 14: 2035–2044

    Article  CAS  Google Scholar 

  39. Bargou RC, Bommert K, Weinmann P, Daniel PT, Mapara MY, Dörken B . Induction of Bax-α precedes apoptosis in a human B lymphoma cell line: potential role of the Bcl-2 gene family in surface IgM-mediated apoptosis Eur J Immunol 1995 25: 770–775

    Article  CAS  Google Scholar 

  40. Osorio LM, De Santiago A, Aguilar-Santelises M, Mellstedt H, Jondal M . CD6 ligation modulates the Bcl-2/Bax ratio and protects chronic lymphocytic leukemia B cells from apoptosis induced by anti-IgM Blood 1997 89: 2833–2841

    CAS  PubMed  Google Scholar 

  41. King D, Pringle JH, Hutchinson M, Cohen GM . Processing/activation of capsases, -3 and -7 and -8, but not caspase-2, in the induction of apoptosis in B-chronic lymphocytic leukemia cells Leukemia 1998 12: 1553–1560

    Article  CAS  Google Scholar 

  42. Fadeel B, Orrenius S, Zhivotovsky B . The most unkindest cut of all: on the multiple roles of mammalian caspases Leukemia 2000 14: 1514–1525

    Article  CAS  Google Scholar 

  43. Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M, Montagna L, Piccoli P, Chisoli M, Caligaris-Cappio F . Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-chronic lymphocytic leukemia Blood 2001 97: 2777–2783

    Article  CAS  Google Scholar 

  44. Dillman RO, Shawler DL, Sobol RE . Murine monoclonal antibody therapy in two patients with chronic lymphocytic leukemia Blood 1982 59: 1036–1045

    CAS  PubMed  Google Scholar 

  45. Fonn KA, Schroff RW, Bunn PA, Mayer D, Abrams PG, Fer M, Ochs J, Bottino GC, Sherwin SA, Carlo DJ . Effects of monoclonal antibody therapy in patients with chronic lymphocytic leukemia Blood 1984 64: 1085–1093

    Google Scholar 

  46. Foss FM, Taubischeck A, Mulshine JL, Fleisher TA, Reynolds JC, Paik CH, Neumann RD, Boland C, Perentesis P, Brown MR, Frincke JM, Lollo CP, Larson SM, Carrasquillo JA . Phase I study of the parmacokinetics of a radioimmuno-conjugate, 90Y-T101, in patients with CD5-expressing leukemia and lymphoma Clin Cancer Res 1998 11: 2691–2700

    Google Scholar 

Download references

Acknowledgements

We thank Professors M Bourel, JL Binet (Académie Nationale Française de Médecine, Paris, France), F Caligaris-Cappio (Università di Torino, Torino, Italy) and JL Preud'homme (CNRS, Poitiers, France) for critical reading of the manuscript. We are also indebted to Professors M Hirn (Immunotech, Marseilles, France) and PC Beverley (Jenner Institute for Vaccine Development, Compton, UK) who provided reagents, and to Ms S Hamon and S Forest for secretarial assistance. This work was supported by the ‘Académie Nationale Française de Médecine’ and the ‘Comité du Finistère de la Ligue Nationale contre le Cancer’, and an INTAS European Community grant.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pers, J., Berthou, C., Porakishvili, N. et al. CD5-induced apoptosis of B cells in some patients with chronic lymphocytic leukemia. Leukemia 16, 44–52 (2002). https://doi.org/10.1038/sj.leu.2402327

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402327

Keywords

This article is cited by

Search

Quick links