Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Nitric oxide enhancement of fludarabine cytotoxicity for B-CLL lymphocytes

Abstract

Fludarabine is active but not curative in the treatment of chronic lymphocytic leukemia (B-CLL). Nitric oxide (NO) supplied from exogenous, NO-donating pro-drugs can also induce apoptosis and death of acute leukemia cells. This study investigated combinations of fludarabine with NO-donating pro-drugs for their cytotoxicity against freshly isolated B-CLL lymphocytes following a 72 h exposure in vitro. The median IC50for fludarabine was 2.2 μM (n = 85). The nitric oxide donors DETA-NO, PAPA-NO, and MAHMA-NO were also cytotoxic, and their effects were inversely related to rates of NO release. Neither DETA-NO depleted of NO nor DETA itself was effective, indicating that NO was required for cytotoxicity. Drug interactions were evaluated by a modified combination index method. Synergy was observed in combinations of fludarabine or nelarabine (506U78) with DETA-NO in 52% and 88% of samples, respectively. Interestingly, the combination of fludarabine and DETA-NO was more cytotoxic in B-CLL cells less sensitive to fludarabine. DETA-NO did not enhance the activity of other DNA anti-metabolites, topoisomerase I and II inhibitors, or alkylating agents. Finally, the anti-leukemic activity of fludarabine alone or in combination with DETA-NO was found to correlate with inhibition of cellular RNA synthesis. These results indicate that NO donors could enhance fludarabine therapy for B-CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wierda WG, Kipps TJ . Chronic lymphocytic leukemia Curr Opin Hematol 1999 6: 253–261

    CAS  PubMed  Google Scholar 

  2. Rai KR, Peterson B, Elias L, Shepherd L, Hines J, Nelson D, Cheson B, Kolitz J, Schiffer CA . A randomized comparison of fludarabine and chlorambucil for patients with previously untreated chronic lymphocytic leukemia. A CALGB, SWOG, CTG/NCI-C and ECOG inter-group study Blood 1996 88: 552–552

    Google Scholar 

  3. Jaksic B, Brugiatelli M, Krc I, Losonczi H, Holowiecki J, Planinc-Peraica A, Kusec R, Morabito F, Iacopino P, Lutz D . High dose chlorambucil vs Binet's modified cyclophosphamide, doxorubicin, vincristine, and prednisone regimen in the treatment of patients with advanced B-cell chronic lymphocytic leukemia. Results of an international multicenter randomized trial. International Society for Chemo-Immunotherapy, Vienna Cancer 1997 79: 2107–2114

    CAS  PubMed  Google Scholar 

  4. Johnson S, Smith AG, Loffler H, Osby E, Juliusson G, Emmerich B, Wyld PJ, Hiddemann W . Multicentre prospective randomised trial of fludarabine versus vs cyclophosphamide, doxorubicin, and prednisone (CAP) for advanced-stage chronic lymphocytic leukaemia. The French Group on CLL Lancet 1996 347: 1432–1438

    CAS  PubMed  Google Scholar 

  5. Osterborg A, Dyer MJ, Bunjes D, Pangalis GA, Bastion Y, Catovsky D, Mellstedt H . Phase II multicenter study of human CD52 antibody in previously treated chronic lymphocytic leukemia. European Study Group of CAMPATH-1H Treatment in Chronic Lymphocytic Leukemia J Clin Oncol 1997 15: 1567–1574

    CAS  PubMed  Google Scholar 

  6. Jurlander J, Lai CF, Tan J, Chou CC, Geisler CH, Schriber J, Blumenson LE, Narula SK, Baumann H, Caligiuri MA . Characterization of interleukin-10 receptor expression on B-cell chronic lymphocytic leukemia cells Blood 1997 89: 4146–4152

    CAS  PubMed  Google Scholar 

  7. Kim YM, Kim TH, Seol DW, Talanian RV, Billiar TR . Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome c release J Biol Chem 1998 273: 31437–31441

    CAS  PubMed  Google Scholar 

  8. Genaro AM, Hortelano S, Alvarez A, Martineza C, Bosca L . Splenic B-lymphocyte programmed cell-death is prevented by nitric-oxide release through mechanisms involving sustained Bcl-2 levels J Clin Invest 1995 95: 1884–1890

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao H, Dugas N, Mathiot C, Delmer A, Dugas B, Sigaux F, Kolb JP . B-cell chronic lymphocytic leukemia cells express a functional inducible nitric oxide synthase displaying anti-apoptotic activity Blood 1998 92: 1031–1043

    CAS  PubMed  Google Scholar 

  10. Mannick JB, Hausladen A, Liu LM, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, Stamler JS . Fas-induced caspase denitrosylation Science 1999 284: 651–654

    CAS  PubMed  Google Scholar 

  11. Li J, Billiar TR, Talanian RV, Kim YM . Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation Biochem Biophys Res Commun 1997 240: 419–424

    CAS  PubMed  Google Scholar 

  12. Mohr S, Zech B, Lapetina EG, Brune B . Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide Biochem Biophys Res Commun 1997 238: 387–391

    CAS  PubMed  Google Scholar 

  13. Shami PJ, Sauls DL, Weinberg JB . Schedule and concentration-dependent induction of apoptosis in leukemia cells by nitric oxide Leukemia 1998 12: 1461–1466

    CAS  PubMed  Google Scholar 

  14. Chou T, Talalay P . Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors Adv Enzyme Regul 1984 22: 27–55

    CAS  PubMed  Google Scholar 

  15. Kanzawa F, Nishio K, Fukuoka K, Fukuda M, Kunimoto T, Saijo N . Evaluation of synergism by a novel three-dimensional model for the combined action of cisplatin and etoposide on the growth of a human small-cell lung-cancer cell line, SBC-3 Int J Cancer 1997 71: 311–319

    CAS  PubMed  Google Scholar 

  16. Cohen DP, Adams DJ, Flowers JL, Wall ME, Wani MC, Manikumar G, Colvin OM, Silber R . Pre-clinical evaluation of SN-38 and novel camptothecin analogs against human chronic B-cell lymphocytic leukemia lymphocytes Leukemia Res 1999 23: 1061–1070

    CAS  Google Scholar 

  17. Keefer LK, Nims RW, Davies KM, Wink DA . ‘NONOates’ (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: convenient nitric oxide dosage forms: nitric oxide: Pt a – Sources and detection of No: No Synthase Meth Enzymol 1996 268: 281–293

    CAS  PubMed  Google Scholar 

  18. Jia L, Bonaventura C, Bonaventura J, Stamler JS . S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control Nature 1996 380: 221–226

    CAS  PubMed  Google Scholar 

  19. Pinsky DJ, Patton S, Mesaros S, Brovkovych V, Kubaszewski E, Grunfeld S, Malinski T . Mechanical transduction of nitric oxide synthesis in the beating heart Circul Res 1997 81: 372–379

    CAS  Google Scholar 

  20. Vallance P, Patton S, Bhagat K, MacAllister R, Radomski M, Moncada S, Malinski T . Direct measurement of nitric oxide in human beings Lancet 1995 346: 153–154

    CAS  PubMed  Google Scholar 

  21. Daniel PT . Dissecting the pathways to death Leukemia 2000 14: 2035–2044

    CAS  PubMed  Google Scholar 

  22. Solary E, Droin N, Bettaieb A, Corcos L, Dimanche-Boitrel MT, Garrido O . Positive and negative regulation of apoptotic pathways by cytotoxic agents in hematological malignancies Leukemia 2000 14: 1833–1849

    CAS  PubMed  Google Scholar 

  23. Huang P, Sandoval A, Van Den Neste E, Keating MJ, Plunkett W . Inhibition of RNA transcription: a biochemical mechanism of action against chronic lymphocytic leukemia cells by fludarabine Leukemia 2000 14: 1405–1413

    CAS  PubMed  Google Scholar 

  24. Hanauske A, Von Hoff D . Clinical development of fludarabine. In: Cheson B, Keating M, Plunkett W (eds) Nucleoside Analogs in Cancer Therapy, vol. 12, Basic and Clinical Oncology Dekker: New York 1997 pp 113–158

    Google Scholar 

  25. Kano Y, Akutsu M, Tsunoda S, Suzuki K, Ichikawa A, Furukawa Y, Bai L, Kon K . In vitro cytotoxic effects of fludarabine (2-F-ara-A) in combination with commonly used antileukemic agents by isobologram analysis Leukemia 2000 14: 379–388

    CAS  PubMed  Google Scholar 

  26. Weiss MA, Glenn M, Maslak P, Rahman Z, Noy A, Zelenetz A, Scheinberg DA, Golde DW . Consolidation therapy with high-dose cyclophosphamide improves the quality of response in patients with chronic lymphocytic leukemia treated with fludarabine as induction therapy Leukemia 2000 14: 1577–1582

    CAS  PubMed  Google Scholar 

  27. Plunkett W, Gandhi V . Nucleoside analogs: cellular pharmacology, mechanisms of action, and strategies for combination therapy. In: Cheson B, Keating M, Plunkett W (eds) Nucleoside Analogs in Cancer Therapy, vol. 12, Basic and Clinical Oncology Dekker: New York 1997 pp 1–35

    Google Scholar 

  28. Laval F, Wink DA . Inhibition by nitric oxide of the repair protein, O6-methylguanine-DNA-methyltransferase Carcinogenesis 1994 15: 443–447

    CAS  PubMed  Google Scholar 

  29. Iwasaki H, Huang P, Keating MJ, Plunkett W . Differential incorporation of ara-C, gemcitabine, and fludarabine replicating and repairing DNA in proliferating human leukemia cells Blood 1997 90: 270–278

    CAS  PubMed  Google Scholar 

  30. Huang P, Plunkett W . Action of 9-beta-D-arabinofuranosyl-2-fluoroadenine on RNA metabolism Molec Pharmacol 1991 39: 449–455

    CAS  Google Scholar 

  31. Genini D, Budihardjo I, Plunkett W, Wang X, Carrera CJ, Cottam HB, Carson DA, Leoni LM . Nucleotide requirements for the in vitro activation of the apoptosis protein-activating factor-1-mediated caspase pathway J Biol Chem 2000 275: 29–34

    CAS  PubMed  Google Scholar 

  32. Frank DA, Mahajan S, Ritz J . Fludarabine-induced immunosuppression is associated with inhibition of STAT1 signaling Nature Med 1999 5: 444–447

    CAS  PubMed  Google Scholar 

  33. Frank DA, Mahajan S, Ritz J . B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues J Clin Invest 1997 100: 3140–3148

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Levesque MC, Adams DJ, Misukonis MA, Flowers J, Silber R, Weinberg JB . Detection of inducible nitric oxide synthase (NOS2) mRNA, antigen and enzyme activity in leukemia cells from patients with CLL Blood 1998 92: 1781

    Google Scholar 

  35. Kolb JP . Mechanisms involved in the pro- and anti-apoptotic role of NO in human leukemia Leukemia 2000 14: 1685–1694

    CAS  PubMed  Google Scholar 

  36. Mannick JB, Miao XQ, Stamler JS . Nitric oxide inhibits Fas-induced apoptosis J Biol Chem 1997 272: 24125–24128

    CAS  PubMed  Google Scholar 

  37. Hibbs JJ . Synthesis of nitric oxide from L-arginine: a recently discovered pathway induced by cytokines with antitumour and antimicrobial activity Res Immunol 1991 142: 565–569

    CAS  PubMed  Google Scholar 

  38. Stamler JS . Redox signaling – nitrosylation and related target interactions of nitric-oxide Cell 1994 78: 931–936

    CAS  PubMed  Google Scholar 

  39. Cooper CE . Nitric oxide and iron proteins Biochim Biophys Acta 1999 1411: 290–309

    CAS  PubMed  Google Scholar 

  40. Brown GC . Nitric oxide and mitochondrial respiration Biochim Biophys Acta 1999 1411: 351–369

    CAS  PubMed  Google Scholar 

  41. Beltran B, Orsi A, Clementi E, Moncada S . Oxidative stress and S-nitrosylation of proteins in cells Br J Pharmacol 2000 129: 953–960

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mohr S, Hallak H, de Boitte A, Lapetina EG, Brune B . Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase J Biol Chem 1999 274: 9427–9430

    CAS  PubMed  Google Scholar 

  43. Graziewicz M, Wink DA, Laval F . Nitric oxide inhibits DNA ligase activity: potential mechanisms for NO-mediated DNA damage Carcinogenesis 1996 17: 2501–2505

    CAS  PubMed  Google Scholar 

  44. Wink DA, Cook JA, Christodoulou D, Krishna MC, Pacelli R, Kim S, DeGraff W, Gamson J, Vodovotz Y, Russo A, Mitchell JB . Nitric oxide and some nitric oxide donor compounds enhance the cytotoxicity of cisplatin Nitric Oxide-Biol Chem 1997 1: 88–94

    CAS  Google Scholar 

  45. Cook JA, Krishna MC, Pacelli R, DeGraff W, Liebmann J, Mitchell JB, Russo A, Wink DA . Nitric oxide enhancement of melphalan-induced cytotoxicity Br J Cancer 1997 76: 325–334

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Saavedra JE, Shami PJ, Wang LY, Davies KM, Booth MN, Citro ML, Keefer LK . Esterase-sensitive nitric oxide donors of the diazeniumdiolate family: in vitro antileukemic activity J Med Chem 2000 43: 261–269

    CAS  PubMed  Google Scholar 

  47. Saavedra JE, Billiar TR, Williams DL, Kim YM, Watkins SC, Keefer LK . Targeting nitric oxide (NO) delivery in vivo. Design of a liver-selective NO donor prodrug that blocks tumor necrosis factor-alpha-induced apoptosis and toxicity in liver J Med Chem 1997 40: 1947–1954

    CAS  PubMed  Google Scholar 

  48. Kanzawa F, Nishio K, Fukuoka K, Sunami T, Saijo N . In vitro interactions of a new derivative of spicamycin, KRN5500, and other anticancer drugs using a three-dimensional model Cancer Chemother Pharmacol 1999 43: 353–363

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from Berlex Laboratories, the VA Research Service, the Leukemia and Lymphoma Society of America, and NIH grants AR-39162 and Al-41764. This manuscript is dedicated to the memory of Dr Robert Silber, who initiated the work and inspired the research team. The authors are indebted to Dr Fumihiko Kanzawa for his guidance on application of the three-dimensional drug interaction model.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, D., Levesque, M., Weinberg, J. et al. Nitric oxide enhancement of fludarabine cytotoxicity for B-CLL lymphocytes. Leukemia 15, 1852–1859 (2001). https://doi.org/10.1038/sj.leu.2402291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402291

Keywords

This article is cited by

Search

Quick links