Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Biotechnical Methods Section BTS
  • Published:

Biotechnical Methods Section (BTS)

Cloning of human thymic stromal lymphopoietin (TSLP) and signaling mechanisms leading to proliferation

Abstract

Thymic stromal lymphopoietin (TSLP) is a novel cytokine that was found to promote the development of murine B cells in vitro. Here we describe the cloning and characterization of the human homologue of murine TSLP. This protein, which is expressed in a number of tissues including heart, liver and prostate, prevented apoptosis and stimulated growth of the human acute myeloid leukemia (AML)-derived cell line MUTZ-3. Anti-interleukin (IL)-7 receptor antibodies (Abs) neutralized this effect indicating that TSLP binds to at least part of the IL-7 receptor complex. TSLP induced phosphorylation of signal transducer and activator of transcription (STAT)-5. In contrast to IL-7, TSLP-triggered STAT-5 phosphorylation was not preceded by activation of janus kinase (JAK) 3. These findings would be in accordance with the notion, raised previously for the mouse system, that TSLP leads to STAT-5 phosphorylation by activating other kinases than the JAKs. Some other signaling pathways stimulated by many cytokines are not involved in TSLP activity; thus, TSLP did not stimulate activation of ERK1,2 and p70S6K. Furthermore, neutralizing Abs raised against cytokines known to stimulate the growth of MUTZ-3 cells did not inhibit the proliferative effects of TSLP, suggesting that TSLP-induced growth was a direct effect. In summary, we describe the cloning of human TSLP and its proliferative effects on a myeloid cell line. TSLP-induced proliferation is preceded by phosphorylation of STAT-5, but not of JAK 3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Friend SL, Hosier S, Nelson A, Foxworthe D, Williams DE, Farr AG . A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells Exp Hematol 1994 22: 321–328

    CAS  PubMed  Google Scholar 

  2. Levin SD, Koelling RM, Friend SL, Isaksen DE, Ziegler SF, Perlmutter RM, Farr AG . Thymic stromal lymphopoietin: a cytokine that promotes the development of IgM+ B cells in vitro and signals via a novel mechanism J Immunol 1999 162: 677–683

    CAS  PubMed  Google Scholar 

  3. Park LS, Martin U, Garka K, Gliniak B, DiSanto JP, Muller W, Largaespada DA, Copeland NG, Jenkins NA, Farr AG, Ziegler SF, Morrissey PR, Paxton R, Sims J . Cloning of the murine thymic stromal lymphophoietin (TSLP) receptor. Formation of a functional heteromeric complex requires IL-7 receptor J Exp Med 2000 192: 659–670

    Article  CAS  Google Scholar 

  4. Hiroyama T, Iwama A, Morita Y, Nakamura Y, Shibuya A, Nakauchi H . Molecular cloning and characterization of CRLM-2, a novel type I cytokine receptor preferentially expressed in hematopoietic cells Biochem Biophys Res Comm 2000 272: 224–229

    Article  CAS  Google Scholar 

  5. Fujio K, Nosaka T, Kojima T, Kawashima T, Yahata T, Copeland NG, Gilbert DJ, Jenkins NA, Yamamoto K, Nishimura T, Kitamura T . Molecular cloning of a novel type I cytokine receptor similar to the common gamma chain Blood 2000 95: 2204–2211

    CAS  PubMed  Google Scholar 

  6. Pandey A, Ozaki K, Baumann H, Levin SD, Puel A, Farr AG, Ziegler SF, Leonhard WJ, Lodish HF . Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin Nature Immunol 2000 1: 59–64

    Article  CAS  Google Scholar 

  7. Sims JE, Williams DE, Morissey PJ, Garka K, Foxworthe D, Price V, Friend S, Farr A, Bedell MA, Jenkins NA, Copeland NG, Grabstein K, Paxton RJ . Molecular cloning and biological characterization of a novel murine lymphoid growth factor J Exp Med 2000 192: 671–680

    Article  CAS  Google Scholar 

  8. Drexler HG, Zaborski M, Quentmeier H . Cytokine response profiles of human myeloid factor-dependent leukemia cell lines Leukemia 1997 11: 701–708

    Article  CAS  Google Scholar 

  9. Drexler HG, Dirks W, MacLeod RAF, Quentmeier H, Steube KG, Uphoff CC . DSMZ Catalogue of Human and Animal Cell Lines 8th edn DSMZ: Braunschweig, Germany 2001

    Google Scholar 

  10. Chiba S, Takaku F, Tange T, Shibuya K, Misawa C, Sasaki K, Miyagawa K, Yazaki Y, Hirai H . Establishment and erythroid differentiation of a cytokine-dependent human leukemic cell line F-36: a parental line requiring granulocyte–macrophage colony-stimulating factor or interleukin-3, and a subline requiring erythropoietin Blood 1991 78: 2261–2268

    CAS  PubMed  Google Scholar 

  11. Morgan DA, Class R, Soslau G, Brodsky I . Cytokine-mediated erythroid maturation in megakaryoblastic human cell line HU-3 Exp Hematol 1997 25: 1378–1385

    CAS  PubMed  Google Scholar 

  12. Avanzi GC, Lista P, Giovinazzo, B, Miniero R, Saglio G, Benetton G, Coda R, Cattoretti G, Pegoraro L . Selective growth response to IL-3 of a human leukaemic cell line with megakaryoblastic features Br J Haematol 1988 69: 359–366

    Article  CAS  Google Scholar 

  13. Itano M, Tsuchiya S, Minegishi N, Fujie H, Minegishi M, Morita S, Yambe T, Ohashi Y, Masuda T, Koike T, Konno T . Establishment and characterization of a novel human immature megakaryoblastic leukemia cell line, M-MOK, dependent on fibroblasts for its viability Exp Hematol 1995 23: 1301–1309

    CAS  PubMed  Google Scholar 

  14. Matozaki S, Nakagawa T, Kawaguchi R, Aozaki R, Tsutsumi M, Murayama T, Koizumi T, Isobe RNT, Chihara K . Establishment of a myeloid leukaemic cell line (SKNO-1) from a patient with t(8;21) who acquired monosomy 17 during disease progression Br J Haematol 1995 89: 805–811

    Article  CAS  Google Scholar 

  15. Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki T, Miayagawa K, Pia YF, Miazono K, Urabe A, Takaku F . Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin J Cell Physiol 1989 140: 323–334

    Article  CAS  Google Scholar 

  16. Quentmeier H, Zaborski M, Drexler HG . The human bladder carcinoma cell line 5637 constitutively secretes functional cytokines Leukemia Res 1997 21: 343–350

    Article  CAS  Google Scholar 

  17. Hu ZB, Ma W, Zaborski M, MacLeod RAF, Quentmeier H, Drexler HG . Establishment and characterization of two novel cytokine-responsive acute myeloid and monocytic leukemia cell lines, MUTZ-2 and MUTZ-3 Leukemia 1996 10: 1025–1040

    CAS  PubMed  Google Scholar 

  18. Wang C, Curtis JE, Minden MD, McCulloch EA . Expression of a retinoic acid receptor gene in myeloid leukemia cells Leukemia 1989 3: 264–269

    CAS  PubMed  Google Scholar 

  19. Wang C, Koistinen P, Yang GS, Williams DE, Lyman SD, Minden MD, McCulloch EA . Mast cell growth factor, a ligand for the receptor encoded by c-kit, affects the growth in culture of the blast cells of acute myeloblastic leukemia Leukemia 1991 5: 493–499

    CAS  PubMed  Google Scholar 

  20. Komatsu N, Nakauchi H, Miwa A, Ishihara T, Eguchi M, Moroi M, Okada M, Sato Y, Wada H, Yawata Y, Suda T, Miura Y . Establishment and characterization of a human leukemic cell line with megakaryocytic features: dependency on granulocyte–macrophage colony-stimulating factor, interleukin 3, or erythropoietin for growth and survival Cancer Res 1991 51: 341–348

    CAS  PubMed  Google Scholar 

  21. Mire-Sluis AR, Healey L, Griffiths S, Hockley D, Thorpe R . Development of a continuous IL-7-dependent murine pre-B cell line PB-1 suitable for the biological characterisation and assay of human IL-7 J Immunol Meth 2000 236: 71–76

    Article  CAS  Google Scholar 

  22. Giri JG, Eisenman AM, Shanebeck K et al. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15 EMBO J 1994 13: 2822–2830

    Article  CAS  Google Scholar 

  23. Hopp TP, Prickett KS, Price VL, Libby RT, March CJ, Cerretti DP . A short polypeptide marker useful for recombinant protein identification and purification Biotechnology 1988 6: 1204–1210

    Article  CAS  Google Scholar 

  24. Quentmeier H, Dirks WG, Fleckenstein D, Zaborski M, Drexler HG . Tumor necrosis factor alpha-induced proliferation requires synthesis of granulocyte–macrophage colony-stimulating factor Exp Hematol 2000 28: 1008–1015

    Article  CAS  Google Scholar 

  25. Ray RJ, Furlonger C, Williams DE, Paige CJ . Characterization of thymic stromal-derived lymphopoietin (TSLP) in murine B cell development in vitro Eur J Immunol 1996 26: 10–16

    Article  CAS  Google Scholar 

  26. Isaksen DE, Baumann H, Trobridge PA, Farr AG, Levin SD, Ziegler SF . Requirement for Stat5 in thymic stromal lymphopoietin-mediated signal transduction J Immunol 1999 163: 5971–5977

    CAS  PubMed  Google Scholar 

  27. Armitage RJ, Namen AE, Sassenfeld HM, Grabstein KH . Regulation of human T cell proliferation by IL-7 J Immunol 1990 144: 938–941

    CAS  PubMed  Google Scholar 

  28. Jicha DL, Mulé JJ, Rosenberg SA . Interleukin 7 generates antitumor cytotoxic T lymphocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy J Exp Med 1991 174: 1511–1515

    Article  CAS  Google Scholar 

  29. Alderson MR, Tough TW, Ziegler SF, Grabstein KH . Interleukin 7 induces cytokine secretion and tumoricidal activity by human peripheral blood monocytes J Exp Med 1991 173: 923–930

    Article  CAS  Google Scholar 

  30. Miyazaki T, Kawahara A, Fuji H, Nakagawa Y, Minami Y, Liu ZJ, Oishi I, Silvennoinen O, Witthuhn BA, Ihle JN, Taniguchi T . Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits Science 1994 266: 1045–1047

    Article  CAS  Google Scholar 

  31. Russel SM, Johnston JA, Noguchi M, Kawamura M, Bacon CM, Friedmann M, Berg M, McVicar DW, Witthuhn BA, Silvennoinen O, Goldman AS Schmalstieg FC, Ihle JN, O'Shea JJ, Leonard WJ . Interaction of IL-2R β and γc chains with Jak1 and Jak3: implications for XSCID and XCID Science 1994 266: 1042–1045

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the help of Kirsten Garka in preparing the rh TSLP used in these studies.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quentmeier, H., Drexler, H., Fleckenstein, D. et al. Cloning of human thymic stromal lymphopoietin (TSLP) and signaling mechanisms leading to proliferation. Leukemia 15, 1286–1292 (2001). https://doi.org/10.1038/sj.leu.2402175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402175

Keywords

This article is cited by

Search

Quick links