Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Immunophenotypic Identification of Precursor B-ALL: A Multicentric MRD BIOMED-1 Study

BIOMED-1 concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings

Abstract

The flow cytometric detection of minimal residual disease (MRD) in precursor-B-acute lymphoblastic leukemias (precursor-B-ALL) mainly relies on the identification of minor leukemic cell populations that can be discriminated from their normal counterparts on the basis of phenotypic aberrancies observed at diagnosis. This technique is not very complex, but discordancies are frequently observed between laboratories, due to the lack of standardized methodological procedures and technical conditions. To develop standardized flow cytometric techniques for MRD detection, a European BIOMED-1 Concerted Action was initiated with the participation of laboratories from six different countries. The goal of this concerted action was to define aberrant phenotypic profiles in a series of 264 consecutive de novo precursor-B-ALL cases, systematically studied with one to five triple-labelings (TdT/CD10/CD19, CD10/CD20/CD19, CD34/CD38/CD19, CD34/CD22/CD19 and CD19/CD34/CD45) using common flow cytometric protocols in all participating laboratories. The use of four or five triple-stainings allowed the identification of aberrant phenotypes in virtually all cases tested (127 out of 130, 98%). These phenotypic aberrancies could be identified in at least two and often three triple-labelings per case. When the analysis was based on two or three triple-stainings, lower incidences of aberrancies were identified (75% and 81% of cases, respectively) that could be detected in one and sometimes two triple-stainings per case. The most informative triple staining was the TdT/CD10/CD19 combination, which enabled the identification of aberrancies in 78% of cases. The frequencies of phenotypic aberrations detected with the other four triple-stainings were 64% for CD10/CD20/CD19, 56% for CD34/CD38/CD19, 46% for CD34/CD22/CD19, and 22% for CD19/CD34/CD45. In addition, cross-lineage antigen expression was detected in 45% of cases, mainly coexpression of the myeloid antigens CD13 and/or CD33 (40%). Parallel flow cytometric studies in different laboratories finally resulted in highly concordant results (>90%) for all five antibody combinations, indicating the high reproducibility of our approach. In conclusion, the technique presented here with triple-labelings forms an excellent basis for standardized flow cytometric MRD studies in multicenter international treatment protocols for precursor-B-ALL patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Campana D, Pui CH . Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance Blood 1995 85: 1416–1434

    CAS  PubMed  Google Scholar 

  2. Coustan-Smith E, Behm FG, Sanchez J, Boyett JM, Hancock ML, Raimondi SC, Rubnitz JE, Rivera GK, Sandlund JT, Pui CH, Campana D . Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia Lancet 1998 351: 550–554

    Article  CAS  PubMed  Google Scholar 

  3. Ciudad J, San Miguel JF, Lopez-Berges MC, Vidriales B, Valverde B, Ocqueteau M, Mateos G, Caballero MD, Hernandez J, Moro MJ, Mateos MV, Orfao A . Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia J Clin Oncol 1998 16: 3774–3781

    Article  CAS  PubMed  Google Scholar 

  4. van Dongen JJ, Hooijkaas H, Adriaansen HJ, Hahlen K, van Zanen GE . Detection of minimal residual acute lymphoblastic leukemia by immunological marker analysis: possibilities and limitations In: Hagenbeek A, Lowenberg B (eds) Minimal Residual Disease in Acute Leukemia Martinus Nijhoff Publishers: Dordrecht 1986 pp 113–133

    Google Scholar 

  5. Ryan DH, Chapple CW, Kossover SA, Sandberg AA, Cohen HJ . Phenotypic similarities and differences between CALLA-positive acute lymphoblastic leukemia cells and normal marrow CALLA-positive B cell precursors Blood 1987 70: 814–821

    CAS  PubMed  Google Scholar 

  6. Sobol RE, Mick R, Royston I, Davey FR, Ellison RR, Newman R, Cuttner J, Griffin JD, Collins H, Nelson DA . Clinical importance of myeloid antigen expression in adult acute lymphoblastic leukemia N Engl J Med 1987 316: 1111–1117

    Article  CAS  PubMed  Google Scholar 

  7. Bradstock KF, Kirk J, Grimsley PG, Kabral A, Hughes WG . Unusual immunophenotypes in acute leukaemias: incidence and clinical correlations Br J Haematol 1989 72: 512–518

    Article  CAS  PubMed  Google Scholar 

  8. Campana D, Coustan-Smith E, Janossy G . The immunologic detection of minimal residual disease in acute leukemia (published erratum appears in Blood 1990; 76: 1901) Blood 1990 76: 163–171

    CAS  PubMed  Google Scholar 

  9. Urbano-Ispizua A, Matutes E, Villamor N, Ribera JM, Feliu E, Montserrat E, Granena A, Vives-Corrons JL, Rozman C . Clinical significance of the presence of myeloid associated antigens in acute lymphoblastic leukaemia Br J Haematol 1990 75: 202–207

    Article  CAS  PubMed  Google Scholar 

  10. Pui CH, Behm FG, Singh B, Rivera GK, Schell MJ, Roberts WM, Crist WM, Mirro J Jr . Myeloid-associated antigen expression lacks prognostic value in childhood acute lymphoblastic leukemia treated with intensive multiagent chemotherapy Blood 1990 75: 198–202

    CAS  PubMed  Google Scholar 

  11. Kurec AS, Belair P, Stefanu C, Barrett DM, Dubowy RL, Davey FR . Significance of aberrant immunophenotypes in childhood acute lymphoid leukemia Cancer 1991 67: 3081–3086

    Article  CAS  PubMed  Google Scholar 

  12. Drexler HG, Thiel E, Ludwig WD . Review of the incidence and clinical relevance of myeloid antigen-positive acute lymphoblastic leukemia Leukemia 1991 5: 637–645

    CAS  PubMed  Google Scholar 

  13. Campana D, Coustan-Smith E, Behm FG . The definition of remission in acute leukemia with immunologic techniques Bone Marrow Transplant 1991 8: 429–437

    CAS  PubMed  Google Scholar 

  14. van Dongen JJ, Breit TM, Adriaansen HJ, Beishuizen A, Hooijkaas H . Detection of minimal residual disease in acute leukemia by immunological marker analysis and polymerase chain reaction Leukemia 1992 6: (Suppl. 1) 47–59

    PubMed  Google Scholar 

  15. Orfao A, Ciudad J, Lopez-Berges MC, Lopez A, Vidriales B, Caballero MD, Valverde B, Gonzalez M, San Miguel JF . Acute lymphoblastic leukemia (ALL): detection of minimal residual disease (MRD) at flow cytometry Leuk Lymphoma 1994 13: (Suppl. 1) 87–90

    Article  PubMed  Google Scholar 

  16. Peters RE, Janossy G, Ivory K, al Ismail S, Mercolino T . Leukemia-associated changes identified by quantitative flow cytometry. III. B-cell gating in CD37/kappa/lambda clonality test Leukemia 1994 8: 1864–1870

    CAS  PubMed  Google Scholar 

  17. Lauria F, Raspadori D, Martinelli G, Rondelli D, Ventura MA, Farabegoli P, Tosi P, Testoni N, Visani G, Zaccaria A . Increased expression of myeloid antigen markers in adult acute lymphoblastic leukaemia patients: diagnostic and prognostic implications Br J Haematol 1994 87: 286–292

    Article  CAS  PubMed  Google Scholar 

  18. Preti HA, Huh YO, O'Brien SM, Andreeff M, Pierce ST, Keating M, Kantarjian HM . Myeloid markers in adult acute lymphocytic leukemia. Correlations with patient and disease characteristics and with prognosis Cancer 1995 76: 1564–1570

    Article  CAS  PubMed  Google Scholar 

  19. van Wering ER, Beishuizen A, Roeffen ET, Linden-Schrever BE, Verhoeven MA, Hahlen K, Hooijkaas H, van Dongen JJ . Immunophenotypic changes between diagnosis and relapse in childhood acute lymphoblastic leukemia Leukemia 1995 9: 1523–1533

    CAS  PubMed  Google Scholar 

  20. Guglielmi C, Cordone I, Boecklin F, Masi S, Valentini T, Vegna ML, Ferrari A, Testi AM, Foa R . Immunophenotype of adult and childhood acute lymphoblastic leukemia: changes at first relapse and clinico-prognostic implications Leukemia 1997 11: 1501–1507

    Article  CAS  PubMed  Google Scholar 

  21. Dworzak MN, Fritsch G, Fleischer C, Printz D, Froschl G, Buchinger P, Mann G, Gadner H . Comparative phenotype mapping of normal vs. malignant pediatric B-lymphopoiesis unveils leukemia-associated aberrations Exp Hematol 1998 26: 305–313

    CAS  PubMed  Google Scholar 

  22. Weir EG, Cowan K, LeBeau P, Borowitz MJ . A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four color flow cytometry: implications for residual disease detection Leukemia 1999 13: 558–567

    Article  CAS  PubMed  Google Scholar 

  23. Lucio P, Parreira A, Van den Beemd MW, van Lochem EG, van Wering ER, Baars E, Porwit-MacDonald A, Bjorklund E, Gaipa G, Biondi A, Orfao A, Janossy G, van Dongen JJ, San Miguel JF . Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL Leukemia 1999 13: 419–427

    Article  CAS  PubMed  Google Scholar 

  24. Pongers-Willemse MJ, Seriu T, Stolz F, d'Aniello E, Gameiro P, Pisa P, Gonzalez M, Bartram CR, Panzer-Grumayer ER, Biondi A, San Miguel JF, van Dongen JJ . Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia Leukemia 1999 13: 110–118

    Article  CAS  PubMed  Google Scholar 

  25. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, Gottardi E, Rambaldi A, Dotti G, Griesinger F, Parreira A, Gameiro P, Diaz MG, Malec M, Langerak AW, San Miguel JF, Biondi A . Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia Leukemia 1999 13: 1901–1928

    Article  CAS  PubMed  Google Scholar 

  26. Porwit-MacDonald A, Bjorklund E, Lucio P, van Lochem EG, Mazur J, Parreira A, Van den Beemd MW, van Wering ER, Baars E, Gaipa G, Biondi A, Ciudad J, van Dongen JJ, San Miguel JF, Orfao A . BIOMED-1 concerted action report: flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL) Leukemia 2000 14: 816–825

    Article  CAS  PubMed  Google Scholar 

  27. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C . Proposals for the classification of the acute leukaemias. French–American–British (FAB) co-operative group Br J Haematol 1976 33: 451–458

    Article  CAS  PubMed  Google Scholar 

  28. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, van't Veer MB . Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL) Leukemia 1995 9: 1783–1786

    CAS  PubMed  Google Scholar 

  29. van Lochem EG, Groeneveld K, Te Marvelde JG, Van den Beemd MW, Hooijkaas H, van Dongen JJ . Flow cytometric detection of intracellular antigens for immunophenotyping of normal and malignant leukocytes: testing of a new fixation-permeabilization solution Leukemia 1997 11: 2208–2210

    Article  CAS  PubMed  Google Scholar 

  30. Groeneveld K, Te Marvelde JG, Van den Beemd MW, Hooijkaas H, van Dongen JJ . Flow cytometric detection of intracellular antigens for immunophenotyping of normal and malignant leukocytes Leukemia 1996 10: 1383–1389

    CAS  PubMed  Google Scholar 

  31. Ciudad J, Orfao A, Vidriales B, Macedo A, Martinez A, Gonzalez M, Lopez-Berges MC, Valverde B, San Miguel JF . Immunophenotypic analysis of CD19+ precursors in normal human adult bone marrow: implications for minimal residual disease detection Haematologica 1998 83: 1069–1075

    CAS  PubMed  Google Scholar 

  32. Cave H, van der Werff ten Bosch, Suciu S, Guidal C, Waterkeyn C, Otten J, Bakkus M, Thielemans K, Grandchamp B, Vilmer E . Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group N Engl J Med 1998 339: 591–598

    Article  CAS  PubMed  Google Scholar 

  33. Foroni L, Coyle LA, Papaioannou M, Yaxley JC, Sinclair MF, Chim JS, Cannell P, Secker-Walker LM, Mehta AB, Prentice HG, Hoffbrand AV . Molecular detection of minimal residual disease in adult and childhood acute lymphoblastic leukaemia reveals differences in treatment response Leukemia 1997 11: 1732–1741

    Article  CAS  PubMed  Google Scholar 

  34. Goulden NJ, Knechtli CJ, Garland RJ, Langlands K, Hancock JP, Potter MN, Steward CG, Oakhill A . Minimal residual disease analysis for the prediction of relapse in children with standard-risk acute lymphoblastic leukaemia Br J Haematol 1998 100: 235–244

    Article  CAS  PubMed  Google Scholar 

  35. Gruhn B, Hongeng S, Yi H, Hancock ML, Rubnitz JE, Neale GA, Kitchingman GR . Minimal residual disease after intensive induction therapy in childhood acute lymphoblastic leukemia predicts outcome Leukemia 1998 12: 675–681

    Article  CAS  PubMed  Google Scholar 

  36. Jacquy C, Delepaut B, Van Daele S, Vaerman JL, Zenebergh A, Brichard B, Vermylen C, Cornu G, Martiat P . A prospective study of minimal residual disease in childhood B-lineage acute lymphoblastic leukaemia: MRD level at the end of induction is a strong predictive factor of relapse Br J Haematol 1997 98: 140–146

    Article  CAS  PubMed  Google Scholar 

  37. Knechtli CJ, Goulden NJ, Hancock JP, Harris EL, Garland RJ, Jones CG, Grandage VL, Rowbottom AW, Green AF, Clarke E, Lankester AW, Potter MN, Cornish JM, Pamphilon DH, Steward CG, Oakhill A . Minimal residual disease status as a predictor of relapse after allogeneic bone marrow transplantation for children with acute lymphoblastic leukaemia Br J Haematol 1998 102: 860–871

    Article  CAS  PubMed  Google Scholar 

  38. Knechtli CJ, Goulden NJ, Hancock JP, Grandage VL, Harris EL, Garland RJ, Jones CG, Rowbottom AW, Hunt LP, Green AF, Clarke E, Lankester AW, Cornish JM, Pamphilon DH, Steward CG, Oakhill A . Minimal residual disease status before allogeneic bonemarrow transplantation is an important determinant of successfuloutcome for children and adolescents with acute lymphoblastic leukemia Blood 1998 92: 4072–4079

    CAS  PubMed  Google Scholar 

  39. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L, Stolz F, Schrappe M, Masera G, Kamps WA, Gadner H, van Wering ER, Ludwig WD, Basso G, de Bruijn MA, Cazzaniga G, Hettinger K, Does-van den Berg A, Hop WC, Riehm H, Bartram CR . Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood Lancet 1998 352: 1731–1738

    Article  CAS  PubMed  Google Scholar 

  40. Ciudad J, San Miguel JF, Lopez-Berges MC, Garcia Marcos MA, Gonzalez M, Vazquez L, del Canizo MC, Lopez A, van Dongen JJ, Orfao A . Detection of abnormalities in B-cell differentiation pattern is a useful tool to predict relapse in precursor-B-ALL Br J Haematol 1999 104: 695–705

    Article  CAS  PubMed  Google Scholar 

  41. Dworzak MN, Fritsch G, Fleischer C, Printz D, Froschl G, Buchinger P, Mann G, Gadner H . Multiparameter phenotype mapping of normal and post-chemotherapy B lymphopoiesis in pediatric bone marrow Leukemia 1997 11: 1266–1273

    Article  CAS  PubMed  Google Scholar 

  42. Lavabre-Bertrand T, Janossy G, Ivory K, Peters R, Secker-Walker L, Porwit-MacDonald A . Leukemia-associated changes identified by quantitative flow cytometry: I. CD10 expression Cytometry 1994 18: 209–217

    Article  CAS  PubMed  Google Scholar 

  43. Pezzutto A, Rabinovitch PS, Dorken B, Moldenhauer G, Clark EA . Role of the CD22 human B cell antigen in B cell triggering by anti-immunoglobulin J Immunol 1988 140: 1791–1795

    CAS  PubMed  Google Scholar 

  44. Boue DR, LeBien TW . Expression and structure of CD22 in acute leukemia Blood 1988 71: 1480–1486

    CAS  PubMed  Google Scholar 

  45. Funaro A, Malavasi F . Human CD38, a surface receptor, an enzyme, an adhesion molecule and not a simple marker J Biol Regul Homeost Agents 1999 13: 54–61

    CAS  PubMed  Google Scholar 

  46. Todisco E, Suzuki T, Srivannaboon K, Coustan-Smith E, Raimondi SC, Behm FG, Kitanaka A, Campana D . CD38 ligation inhibits normal and leukemic myelopoiesis Blood 2000 95: 535–542

    CAS  PubMed  Google Scholar 

  47. Desiderio SV, Yancopoulos GD, Paskind M, Thomas E, Boss MA, Landau N, Alt FW, Baltimore D . Insertion of N regions into heavy-chain genes is correlated with expression of terminal deoxytransferase in B cells Nature 1984 311: 752–755

    Article  CAS  PubMed  Google Scholar 

  48. Chilosi M, Pizzolo G . Review of terminal deoxynucleotidyl transferase. Biological aspects, methods of detection, and selected diagnostic application Appl Immunohistochem 1995 3: 209–221

    CAS  Google Scholar 

  49. Orfao A, Schmitz G, Brando B, Ruiz-Arguelles A, Basso G, Braylan R, Rothe G, Lacombe F, Lanza F, Papa S, Lucio P, San Miguel JF . Clinically useful information provided by the flow cytometric immunophenotyping of hematological malignancies: current status and future directions Clin Chem 1999 45: 1708–1717

    CAS  PubMed  Google Scholar 

  50. Tabernero MD, Bortoluci AM, Alaejos I, Lopez-Berges MC, Rasillo A, Garcia-Sanz R, Garcia MA, Sayagués JM, Gonzalez M, Mateos G, San Miguel JF, Orfao A . Adult precursor B-ALL with BRC/ABL gene rearrangements displys a unique immunophenotype based on the pattern of CD10, CD34, CD13 and CD38 expression Leukemia 2001 15: 406–414

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the European BIOMED-1 Concerted Action entitled Investigation of Minimal Residual Disease in Acute Leukemia: International Standardization and Clinical Evaluation (BMH-CMT 94–1675); Liga Portuguesa Contra o Cancro (Lisbon, Portugal); Fondazione Tettamanti, Associazione Italiana per La Ricerca sul Cancro and Consiglio Nazionale delle ricerche (Monza, Italy); Dutch Cancer Society (Koningin Wilhelmina Fonds), grant EUR 94–852 and ‘Ank van Vlissingen Foundation’ (Rotterdam and The Hague, The Netherlands); Swedish Cancer Society (Cancerfonden) and Swedish Childhood Cancer Society (Barncancerfonden) (Stockholm, Sweden).

Author information

Authors and Affiliations

Authors

Consortia

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucio, P., Gaipa, G., van Lochem, E. et al. BIOMED-1 concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. Leukemia 15, 1185–1192 (2001). https://doi.org/10.1038/sj.leu.2402150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402150

Keywords

This article is cited by

Search

Quick links