Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

Mini-Review

Prospects for immunotherapy of acute lymphoblastic leukemia

Abstract

Acute lymphoblastic leukemia (ALL) is diagnosed in approximately 100 000 people worldwide per year and 70% of the patients are children. Most children have a good prognosis, as almost 80% will be cured, however only 30% of adults are cured. Additionally, the current chemotherapies have long- lasting and severe side-effects. These findings indicate that the search for better and safer treatment modalities for ALL is still important. As leukemia directly affects the human immune cells, immunotherapeutic approaches have long been ignored as treatment options for this disease. However, increased knowledge of the immune system has opened new opportunities for immune modulation that could be of benefit to leukemia patients. Several recent advances towards immunotherapy of ALL will be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Miller RW, Young JL, Novakovic B . Childhood cancer Cancer 1994 75: 395–405

    Article  Google Scholar 

  2. Pui CH, Crist WM . Treatment of childhood leukemias Curr Opin Oncol 1995 7: 36–44

    Article  CAS  PubMed  Google Scholar 

  3. Van Dongen JJM, Seriu T, Panzer-Grümayer ER, Biondi A, Pongers-Wllemse MJ, Corral L, Stolz F, Schrappe M, Masera G, Kamps WA, Gadner H, van Wering ER, Ludwig WD, Basso G, de Bruijn AC, Cazzaniga G, Hettinger K, van der Does-van den Berg A, Hop WCJ, Riehm H, Bartram CR . Prognostic value of minimal residual disease in acute lymphoblastic leukemia in childhood Lancet 1998 352: 1731–1738

    Article  CAS  PubMed  Google Scholar 

  4. Greaves MF . Differentiation-linked leukaemogenesis in lymphocytes Science 1986 234: 697–704

    Article  CAS  PubMed  Google Scholar 

  5. Pui CH, Evans WE . Acute lymphoblastic leukemia N Engl J Med 1998 339: 605–610

    Article  CAS  PubMed  Google Scholar 

  6. Pui CH, Crist WM, Look AT . Biology and clinical significance of cytogenetic abnormalities in childhood acute lymphoblastic leukemia Blood 1990 76: 1449–1463

    CAS  PubMed  Google Scholar 

  7. Romana SP, Poirel H, Leconiat M, Flexor MA, Mauchauffe M, Jonveaux P, Macintyre EA, Berger R, Bernard OA . High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia Blood 1995 86: 4263–4269

    CAS  PubMed  Google Scholar 

  8. Greaves M . Molecular genetics, natural history and the demise of childhood leukemia Eur J Cancer 1999 35: 173–185

    Article  CAS  PubMed  Google Scholar 

  9. Hoelzer D . Treatment of acute lymphoblastic leukemia Semin Hematol 1994 31: 1–22

    CAS  PubMed  Google Scholar 

  10. Lestingi T, Hooberman A . Philadelphia chromosone-positive acute lymphoblastic leukemia Hematol Oncol Clin N Am 1993 7: 161–175

    Article  CAS  Google Scholar 

  11. Fletcher JA, Lynch EA, Kimball VM, Donnelly M, Tantravahi R, Sallan SE . Translocation t(9;22) is associated with extremely poor prognosis in intensively treated children with acute lymphoblastic leukemia Blood 1991 77: 435–439

    CAS  PubMed  Google Scholar 

  12. Velders MP, Schreiber H, Kast WM . Active immunization against cancer cells: impediments and advances Semin Oncol 1998 25: 697–706

    CAS  PubMed  Google Scholar 

  13. Schreiber H . Tumor Immunology. In W Paul (ed.) Fundamental Immunology, fourth edn Lippencott-Raven: Philadelphia 1999 pp 1237–1270

    Google Scholar 

  14. Gilboa E . The makings of a tumor rejection antigen Immunity 1999 11: 263–270

    Article  CAS  PubMed  Google Scholar 

  15. Schmutte C, Fishel R . Genomic instability: first step to carcinogenesis Anticancer Res 1999 19: 4665–4696

    CAS  PubMed  Google Scholar 

  16. Albert ML, Sauter B, Bhardwaj N . Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs Nature 1998 392: 86–89

    Article  CAS  PubMed  Google Scholar 

  17. Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N . Conseqences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells J Exp Med 2000 191: 423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schoenberger SP, Toes REM, van der Voort EIH, Offringa R . Melief CJM. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions Nature 1999 393: 480–483

    Article  Google Scholar 

  19. Ridge JP, Di Rosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell Nature 1999 393: 474–478

    Article  Google Scholar 

  20. Bennet SRM, Carbone FR, Karamalis F, Flavell RA, Miller JFAP, Heath WR . Help for cytotoxic-T-cell responses is mediated by CD40 signalling Nature 1999 393: 478–480

    Article  Google Scholar 

  21. Cardoso AA, Schultze JL, Boussiotis VA, Freeman GJ, Seamon MJ, Laszlo S, Billet A, Sallan SE, Gribben JG, Nadler LM . Pre-B acute lymphoblastic leukemia cells may induce T-cell anergy to alloantigen Blood 1996 88: 41–48

    CAS  PubMed  Google Scholar 

  22. Choudhury BA, Liang JC, Thomas EK, Flores-Romo L, Xie QS, Agusala K, Sutaria S, Sinha I, Champlin RE, Claxton DF . Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses Blood 1999 93: 780–786

    CAS  PubMed  Google Scholar 

  23. Schuurhuis DH, Laban S, Toes RE, Ricciardi-Castagnoli P, Kleijmeer MJ, van der Voort EI, Rea D, Offringa R, Geuze HJ, Melief CJ, Ossendorp F . Immature dendritic cells acquire CD8(+) cytotoxic T lymphocyte priming capacity upon activation by T helper cell-independent or -dependent stimuli J Exp Med 2000 192: 145–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu Z, Yuan L, Zhou X, Sotomayor E, Levitsky HI, Pardoll DM . CD40-independent pathways of T cell help for priming of CD8+ cytotoxic T lymphocytes J Exp Med 2000 191: 541–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schultze JL, Cardoso AA, Freeman GJ, Seamon MJ, Daley J, Pinkus GS, Gribben JG, Nadler LM . Follicular lymphomas can be induced to present alloantigen efficiently: a conceptual model to improve their tumor immungenicity Proc Natl Acad Sci USA 1995 92: 8200–8204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dilloo D, Brown M, Roskrow M, Zhong W, Holladay M, Holden W, Brenner M . CD40 ligand induces an antileukemia immune response in vivo Blood 1997 90: 1927–1933

    CAS  PubMed  Google Scholar 

  27. Stripecke R, Skelton DC, Gruber T, Afar D, Pattengale PK, Witte ON, Kohn DB . Immune response to Philadelphia chromosome-positive acute lymphoblastic leukemia induced by expression of CD80, interleukin 2, and granulocyte-macrophage colony-stimulating factor Hum Gene Ther 1998 9: 2049–2062

    Article  CAS  PubMed  Google Scholar 

  28. Stripecke R, Skelton DC, Pattengale PK, Shimada H, Kohn DB . Combination of CD80 and granulocyte–macrophage colony-stimulating factor coexpression by a leukemia cell vaccine: preclinical studies in a murine model recapitulating Philadelphia chromosome-positive acute lymphoblastic leukemia Hum Gene Ther 1999 10: 2109–2122

    Article  CAS  PubMed  Google Scholar 

  29. Stripecke R, Cardoso AA, Pepper KA, Skelton DC, Yu XJ, Mascarenhas L, Weinberg KI, Nadler LM, Kohn DB . Lentiviral vectors for efficient delivery of CD80 and granulocyte–macrophage colony-stimulating factor in human acute lymphoblastic leukemia and acute myeloid leukemia cells to induce antileukemic immune responses Blood 2000 96: 1317–1326

    CAS  PubMed  Google Scholar 

  30. Da Silva DM, Eiben GL, Faush SC, Wakabayashi MT, Rudolf MP, Velders MP, Kast WM . Cervical cancer vaccines: emerging concepts and developments J Cell Physiol 2001 186: 169–182

    Article  CAS  PubMed  Google Scholar 

  31. Bocchia M, Korontsvit T, Xu Q, Mackinnon S, Yang SY, Sette A, Scheinberg DA . Specific human cellular immunity to bcr-abl oncogene-derived peptides Blood 1996 87: 3587–3592

    CAS  PubMed  Google Scholar 

  32. Bosch GJ, Joosten AM, Kessler JH, Melief CJ, Leeksma OC . Recognition of BCR-ABL positive leukemic blasts by human CD4+ T cells elicited by primary in vitro immunization with a BCR-ABL breakpoint peptide Blood 1996 88: 3522–3527

    CAS  PubMed  Google Scholar 

  33. Gambacorti-Passerini C, Grignani F, Arienti F, Pandolfi PP, Pelicci PG, Parmiani G . Human CD4 lymphocytes specifically recognize a peptide representing the fusion region of the hybrid protein pml/RAR alpha present in acute promyelocytic leukemia cells Blood 1993 81: 1369–1375

    CAS  PubMed  Google Scholar 

  34. Yotnda P, Garcia F, Peuchmaur M, Grandchamp B, Duval M, Lemonnier F, Vilmer E, Langlade-Demoyen P . Cytotoxic T cell response against the chimeric ETV6-AML1 protein in childhood acute lymphoblastic leukemia J Clin Invest 1998 102: 455–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yun C, Senju S, Fujita H, Tsuji Y, Irie A, Matsushita S, Nishimura Y . Augmentation of immune response by altered peptide ligands of the antigenic peptide in a human CD4+ T cell clone reacting to TEL/AML1 fusion protein Tissue Antigens 1999 54: 153–161

    Article  CAS  PubMed  Google Scholar 

  36. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR . Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor New Engl J Med 1995 333: 1038–1044

    Article  CAS  PubMed  Google Scholar 

  37. Heslop HE, Ng CY, Li C, Smith CA, Loftin SK, Krance RA, Brenner MK, Rooney CM . Long-term restoration of immunity against Epstein–Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes Nature Med 1996 2: 551–555

    Article  CAS  PubMed  Google Scholar 

  38. Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW, Gan Y, Srivastava DK, Bowman LC, Krance RA, Brenner MK, Heslop HE . Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipient Blood 1998 92: 1549–1555

    CAS  PubMed  Google Scholar 

  39. Brodie SJ, Lewinsohn DA, Patternson BK, Jiyamapa D, Krieger J, Corey L, Greenberg PD, Riddell SR . In vivo migration and function of transferred HIV-1-specific cytotoxic T cells Nature Med 1999 5: 34–41

    Article  CAS  PubMed  Google Scholar 

  40. Greenberg PD, Riddell SR . Deficient cellular immunity – finding and fixing the defects Science 1999 285: 546–551

    Article  CAS  PubMed  Google Scholar 

  41. Roskrow MA, Suzuki N, Gan Yj, Sixbey JW, Ng CY, Kimbrough S, Hudson M, Brenner MK, Heslop HE, Rooney CM . Epstein–Barr (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed Hodgkin's disease Blood 1998 91: 2925–2934

    CAS  PubMed  Google Scholar 

  42. Curti BD, Ochoa AC, Powers GC, Kopp WC, Alvord WG, Janik JE, Gause BL, Dunn B, Kopreski MS, Fenton R, Zea A, Dansky-Ullman C, Strobl S, Harvey l, Nelson E, Sznol M, Longo DL . Phase I trial of anti-CD3-stimulated CD4+ T cells, infusional interleukin-2, and cyclophosphamide in patients with advanced cancer J Clin Oncol 1998 16: 2752–2760

    Article  CAS  PubMed  Google Scholar 

  43. Kolb HJ, Holler E . Adoptive immunotherapy with donor lymphocyte transfusions Curr Opin Oncol 1997 9: 139–145

    Article  CAS  PubMed  Google Scholar 

  44. Gratwohl A, Hermans J, Apperley JF, Arcese W, Bacigalupo A, Bandini G, di-Bartolomeo P, Boogaerts M, Bosi A, Carreras E, Devergie A, Ferrant A, Fibbe WE, Frassoni F, Gahrton G, Goldman JM, Iriondo A, Jacobsen N, Kolb HJ, Link H, Michallet M, Prentice HG, Reiffers J, van Rhee F, Ruutu T, Schwaighofer H, Vernant JP, de Witte T, Niederwieser D . Acute graft-versus-host disease: grade and outcome in patients with chronic myelogenous leukemia. Working Party Chronic Leukemia of the European Group for Blood and Marrow Transplantation Blood 1995 86: 813–818

    CAS  PubMed  Google Scholar 

  45. Dazzi F, Szydlo RM, Goldman JM . Donor lymphocyte infusions for relapse of chronic myeloid leukemia after allogeneic stem cell transplant: where we now stand Exp Hematol 1999 27: 1477–1486

    Article  CAS  PubMed  Google Scholar 

  46. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W, Ljungman P, Ferrant A, Verdonck L, Niederwieser D, van Rhee F, Mittermuller J, de Witte T, Holler E, Ansari H . Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia Blood 1995 86: 2041–2050

    CAS  PubMed  Google Scholar 

  47. Cardoso AA, Seamon MJ, Afonso HM, Ghia P, Boussiotis VA, Freeman GJ, Gribben JG, Sallan SE, Nadler LM . Ex vivo generation of human anti-pre-B leukemia specific autologous cytolytic T cells Blood 1997 90: 549–561

    CAS  PubMed  Google Scholar 

  48. Cardoso AA, Veiga JP, Ghia P, Afonso HM, Haining WN, Sallan SE, Nadler LM . Adoptive T-cell therapy for B-cell acute lymphoblastic leukemia: preclinical studies Blood 1999 94: 3531–3540

    CAS  PubMed  Google Scholar 

  49. Manabe A, Murti KG, Coustan-Smith E, Kumagai M, Behm FG, Raimondi SC, Campana D . Adhesion-dependent survival of normal and leukemic human B lymphoblasts on bone marrow stromal cells Blood 1994 83: 758–766

    CAS  PubMed  Google Scholar 

  50. Murti KG, Brown PS, Kumagai M, Campana D . Molecular interactions between human B-cell progenitors and the bone marrow microenvironment Exp Cell Res 1996 226: 47–58

    Article  CAS  PubMed  Google Scholar 

  51. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, Rimm AA, Ringden O, Rozman C, Speck B, Truitt RL, Zwaan FE, Bortin MM . Graft-versus-leukemia reactions after bone marrow transplantation Blood 1990 75: 555–562

    CAS  PubMed  Google Scholar 

  52. Goulmy E . Human minor histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy Immunol Rev 1997 157: 125–140

    Article  CAS  PubMed  Google Scholar 

  53. Niederwieser D, Grassegger A, Aubock J, Herold M, Nachbaur D, Rosenmayr A, Gachter A, Nussbaumer W, Gaggl S, Ritter M, Huber C . Correlation of minor histocompatibility antigen-specific cytotoxic T lymphocytes with graft-versus-host disease status and analyses of tissue distribution of their target antigens Blood 1993 81: 2200–2208

    CAS  PubMed  Google Scholar 

  54. Falkenburg JHF, Goselink HM, van der Harst D, van Luxemburg-Heijs SA, Kooy-Winkelaar YM, Faber LM, de Kroon J, Brand A, Fibbe WE, Willemze R, Goulmy E . Growth inhibition of clonogenic leukemic precursor cells by minor histocompatibility antigen-specific cytotoxic T lymphocytes J Exp Med 1991 174: 27–33

    Article  CAS  PubMed  Google Scholar 

  55. De Bueger M, Bakker A, van Rood JJ, van der Woude F, Goulmy E . Tissue distribution of human minor histocompatibility antigens. Ubiqutous versus restricted tissue distribution indicates heterogeneity among human cytotoxic T lymphocyte-defined non-MHC antigens J Immunol 1992 149: 1788–1794

    CAS  PubMed  Google Scholar 

  56. Den Haan JM, Meadows LM, Wang W, Pool J, Blokland E, Bishop TL, Reinhardus C, Shabanowitz J, Offringa R, Hunt DF, Engelhard VH, Goulmy E . The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism Science 1998 279: 1054–1057

    Article  CAS  PubMed  Google Scholar 

  57. Warren EH, Greenberg PD, Riddell SR . Cytotoxic T-lymphocyte-defined human minor histocompatibility antigens with a restricted tissue distribution Blood 1998 91: 2197–2207

    CAS  PubMed  Google Scholar 

  58. Dolstra H, Fredrix H, Preijers F, Goulmy E, Figdor CG, de Witte TM, van de Wiel-van Kemenade E . Recognition of B cell leukemia-associated minor Histocompatibility antigens by CTL J Immunol 1997 158: 560–565

    CAS  PubMed  Google Scholar 

  59. Mutis T, Verdijk R, Schrama E, Esendam B, Brand A, Goulmy E . Feasibility of immunotherapy of relapsed leukemia with ex vivo-generated cytotoxic T lymphocytes specific for hematopoietic system-restricted minor histocompatibility antigens Blood 1999 7: 2336–2341

    Google Scholar 

  60. Dolstra H, Fredrix H, Maas F, Coulie PG, Brasseur F, Mensink E, Adema GJ, de Witte TM, Figdor CG, van de Wiel-van Kemenade E . A human minor histocompatibility antigen specific for B cell acute lyphoblastic leukemia J Exp Med 1999 189: 301–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MPV is a fellow of the Cancer Research Institute (CRI). We thank Dr Giuseppina Nucifora and Diane Da Silva for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velders, M., Horst, S. & Kast, W. Prospects for immunotherapy of acute lymphoblastic leukemia. Leukemia 15, 701–706 (2001). https://doi.org/10.1038/sj.leu.2402103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402103

Keywords

This article is cited by

Search

Quick links