Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Biotechnical Methods Section BTS
  • Published:

Biotechnical Methods Section (BTS)

Quantification of minimal residual disease in T-lineage acute lymphoblastic leukemia with the TAL-1 deletion using a standardized real-time PCR assay

Abstract

Hematologic relapse remains the greatest obstacle to the cure of children with acute lymphoblastic leukemia (ALL). Recent studies have shown that patients with increased risk of relapse can be identified by measuring residual leukemic cells, called minimal residual disease (MRD), during clinical remission. Current PCR methods, however, for measuring MRD are cumbersome and time-consuming. To improve and simplify MRD assessment, we developed a real-time quantitative PCR (RQ-PCR) assay for detection of leukemic cells that harbor the TAL-1 deletion. We studied serial dilutions of leukemic DNA and found the assay had a sensitivity of detection of one leukemic cell among 100 000 normal cells. We then investigated 23 samples from eight children with ALL in clinical remission. We quantified residual leukemic cells by using the TAL-1 RQ-PCR assay and by using limiting dilution analysis. In 17 samples, both methods detected MRD levels 0.001%. The percentages of leukemic cells measured by the two methods correlated well (r2 = 0.926). In the remaining six samples, both methods detected fewer than 0.001% leukemic cells. We conclude the TAL-1 RQ-PCR assay can be used for rapid, sensitive and accurate assessment of MRD in T-lineage ALL with the TAL-1 deletion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Pui CH, Evans WE . Acute lymphoblastic leukemia N Engl J Med 1998 339: 605–615

    Article  CAS  PubMed  Google Scholar 

  2. Pui CH . Acute lymphoblastic leukemia in children Curr Opin Oncol 2000 12: 3–12

    Article  CAS  PubMed  Google Scholar 

  3. Coustan-Smith E, Behm FG, Sanchez J, Boyett JM, Hancock ML, Raimondi SC, Rubnitz JE, Rivera GK, Sandlund JT, Pui CH, Campana D . Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia Lancet 1998 351: 550–554

    Article  CAS  PubMed  Google Scholar 

  4. Cave H, van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J, Bakkus M, Thielemans K, Grandchamp B, Vilmer E . Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group N Engl J Med 1998 339: 591–598

    Article  CAS  PubMed  Google Scholar 

  5. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L, Stolz F, Schrappe M, Masera G, Kamps WA, Gadner H, van Wering ER, Ludwig WD, Basso G, de Bruijn MA, Cazzaniga G, Hettinger K, van der Does-van den Berg A, Hop WC, Riehm H, Bartram CR . Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood Lancet 1998 352: 1731–1738

    Article  CAS  PubMed  Google Scholar 

  6. Foroni L, Harrison CJ, Hoffbrand AV, Potter MN . Investigation of minimal residual disease in childhood and adult acute lymphoblastic leukaemia by molecular analysis Br J Haematol 1999 105: 7–24

    CAS  PubMed  Google Scholar 

  7. Pui CH, Campana D . New definition of remission in childhood acute lymphoblastic leukemia Leukemia 2000 14: 783–785

    Article  CAS  PubMed  Google Scholar 

  8. Campana D, Pui CH . Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance Blood 1995 85: 1416–1434

    CAS  PubMed  Google Scholar 

  9. Brisco MJ, Condon J, Sykes PJ, Neoh SH, Morley AA . Detection and quantitation of neoplastic cells in acute lymphoblastic leukaemia, by use of the polymerase chain reaction Br J Haematol 1991 79: 211–217

    Article  CAS  PubMed  Google Scholar 

  10. Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA . Quantitation of targets for PCR by use of limiting dilution Biotechniques 1992 13: 444–449

    CAS  PubMed  Google Scholar 

  11. Ouspenskaia MV, Johnston DA, Roberts WM, Estrov Z, Zipf TF . Accurate quantitation of residual B-precursor acute lymphoblastic leukemia by limiting dilution and a PCR-based detection system: a description of the method and the principles involved Leukemia 1995 9: 321–328

    CAS  PubMed  Google Scholar 

  12. Yokota S, Hansen-Hagge TE, Ludwig WD, Reiter A, Raghavachar A, Kleihauer E, Bartram CR . Use of polymerase chain reactions to monitor minimal residual disease in acute lymphoblastic leukemia patients Blood 1991 77: 331–339

    CAS  PubMed  Google Scholar 

  13. Biondi A, Yokota S, Hansen-Hagge TE, Rossi V, Giudici G, Maglia O, Basso G, Tell C, Masera G, Bartram CR . Minimal residual disease in childhood acute lymphoblastic leukemia: analysis of patients in continuous complete remission or with consecutive relapse Leukemia 1992 6: 282–288

    CAS  PubMed  Google Scholar 

  14. Nizet Y, Van Daele S, Lewalle P, Vaerman JL, Philippe M, Vermylen C, Cornu G, Ferrant A, Michaux JL, Martiat P . Long-term follow-up of residual disease in acute lymphoblastic leukemia patients in complete remission using clonogeneic IgH probes and the polymerase chain reaction Blood 1993 82: 1618–1625

    CAS  PubMed  Google Scholar 

  15. Brown L, Cheng JT, Chen Q, Siciliano MJ, Crist W, Buchanan G, Baer R . Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia EMBO J 1990 9: 3343–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heid CA, Stevens J, Livak KJ, Williams PM . Real time quantitative PCR Genome Res 1996 6: 986–994

    Article  CAS  PubMed  Google Scholar 

  17. Bash RO, Crist WM, Shuster JJ, Link MP, Amylon M, Pullen J, Carroll AJ, Buchanan GR, Smith RG, Baer R . Clinical features and outcome of T-cell acute lymphoblastic leukemia in childhood with respect to alterations at the TAL1 locus: a Pediatric Oncology Group study Blood 1993 81: 2110–2117

    CAS  PubMed  Google Scholar 

  18. Breit TM, Beishuizen A, Ludwig WD, Mol EJ, Adriaansen HJ, van Wering ER, van Dongen JJ . tal-1 deletions in T-cell acute lymphoblastic leukemia as PCR target for detection of minimal residual disease Leukemia 1993 7: 2004–2011

    CAS  PubMed  Google Scholar 

  19. Pongers-Willemse MJ, Seriu T, Stolz F, d'Aniello E, Gameiro P, Pisa P, Gonzalez M, Bartram CR, Panzer-Grumayer ER, Biondi A, San Miguel JF, van Dongen JJ . Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia Leukemia 1999 13: 110–118

    Article  CAS  PubMed  Google Scholar 

  20. Taswell C . Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis J Immunol 1981 126: 1614–1619

    CAS  PubMed  Google Scholar 

  21. Aplan PD, Lombardi DP, Reaman GH, Sather HN, Hammond GD, Kirsch IR . Involvement of the putative hematopoietic transcription factor SCL in T-cell acute lymphoblastic leukemia Blood 1992 79: 1327–1333

    CAS  PubMed  Google Scholar 

  22. Delabesse E, Bernard M, Landman-Parker J, Davi F, Leboeuf D, Varet B, Valensi F, Macintyre EA . Simultaneous SIL-TAL1 RT-PCR detection of all tal(d) deletions and identification of novel tal(d) variants Br J Haematol 1997 99: 901–907

    Article  CAS  PubMed  Google Scholar 

  23. Hosler GA, Bash RO, Bai X, Jain V, Scheuermann RH . Development and validation of a quantitative polymerase chain reaction assay to evaluate minimal residual disease for T-cell acute lymphoblastic leukemia and follicular lymphoma Am J Pathol 1999 154: 1023–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V, Roovers E, van der Schoot CE, van Dongen JJ . Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes Leukemia 1998 12: 2006–2014

    Article  CAS  PubMed  Google Scholar 

  25. Eckert C, Landt O, Taube T, Seeger K, Beyermann B, Proba J, Henze G . Potential of LightCycler technology for quantification of minimal residual disease in childhood acute lymphoblastic leukemia Leukemia 2000 14: 316–323

    Article  CAS  PubMed  Google Scholar 

  26. Donovan JW, Ladetto M, Zou G, Neuberg D, Poor C, Bowers D, Gribben JG . Immunoglobulin heavy-chain consensus probes for real-time PCR quantification of residual disease in acute lymphoblastic leukemia Blood 2000 95: 2651–2658

    CAS  PubMed  Google Scholar 

  27. Kwan E, Norris MD, Zhu L, Ferrara D, Marshall GM, Haber M . Simultaneous detection and quantification of minimal residual disease in childhood acute lymphoblastic leukaemia using real-time polymerase chain reaction Br J Haematol 2000 109: 430–434

    Article  CAS  PubMed  Google Scholar 

  28. Mensink E, van de Locht A, Schattenberg A, Linders E, Schaap N, Geurts van Kessel A, De Witte T . Quantitation of minimal residual disease in Philadelphia chromosome positive chronic myeloid leukaemia patients using real-time quantitative RT-PCR Br J Haematol 1998 102: 768–774

    Article  CAS  PubMed  Google Scholar 

  29. Eder M, Battmer K, Kafert S, Stucki A, Ganser A, Hertenstein B . Monitoring of BCR-ABL expression using real-time RT-PCR in CML after bone marrow or peripheral blood stem cell transplantation Leukemia 1999 13: 1383–1389

    Article  CAS  PubMed  Google Scholar 

  30. Marcucci G, Livak KJ, Bi W, Strout MP, Bloomfield CD, Caligiuri MA . Detection of minimal residual disease in patients with AML1/ETO-associated acute myeloid leukemia using a novel quantitative reverse transcription polymerase chain reaction assay Leukemia 1998 12: 1482–1489

    Article  CAS  PubMed  Google Scholar 

  31. Sugimoto T, Das H, Imoto S, Murayama T, Gomyo H, Chakraborty S, Taniguchi R, Isobe T, Nakagawa T, Nishimura R, Koizumi T . Quantitation of minimal residual disease in t(8;21)-positive acute myelogenous leukemia patients using real-time quantitative RT-PCR Am J Hematol 2000 64: 101–106

    Article  CAS  PubMed  Google Scholar 

  32. Fujimaki S, Funato T, Harigae H, Imaizumi M, Suzuki H, Kaneko Y, Miura Y, Sasaki T . A quantitative reverse transcriptase polymerase chain reaction method for the detection of leukaemic cells with t(8;21) in peripheral blood Eur J Haematol 2000 64: 252–258

    Article  CAS  PubMed  Google Scholar 

  33. Cassinat B, Zassadowski F, Balitrand N, Barbey C, Rain JD, Fenaux P, Degos L, Vidaud M, Chomienne C . Quantitation of minimal residual disease in acute promyelocytic leukemia patients with t(15;17) translocation using real-time RT-PCR Leukemia 2000 14: 324–328

    Article  CAS  PubMed  Google Scholar 

  34. Luthra R, McBride JA, Cabanillas F, Sarris A . Novel 5′ exonuclease-based real-time PCR assay for the detection of t(14;18)(q32;q21) in patients with follicular lymphoma Am J Pathol 1998 153: 63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Olsson K, Gerard CJ, Zehnder J, Jones C, Ramanathan R, Reading C, Hanania EG . Real-time t(11;14) and t(14;18) PCR assays provide sensitive and quantitative assessments of minimal residual disease (MRD) Leukemia 1999 13: 1833–1842

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the following NIH grants: R01 CA52259, R01 CA43237 and P30 CA21765; by a Center of Excellence grant from the State of Tennessee, and by the American Lebanese Syrian Associated Charities (ALSAC). We thank Ms Sharon Naron for editorial assistance with the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Pan, Q., Stow, P. et al. Quantification of minimal residual disease in T-lineage acute lymphoblastic leukemia with the TAL-1 deletion using a standardized real-time PCR assay. Leukemia 15, 166–170 (2001). https://doi.org/10.1038/sj.leu.2402000

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402000

Keywords

This article is cited by

Search

Quick links