Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Biotechnical Methods Section BTS
  • Published:

Biotechnical Methods Section (BTS)

Frequent polymorphism in BCR exon b2 identified in BCR-ABL positive and negative individuals using fluorescent hybridization probes

Abstract

Recently, a polymorphic base in exon 13 of the BCR gene (exon b2 of the major breakpoint cluster region) has been identified in the eighth position before the junctional region of BCR-ABL cDNA. Cytosine replaces thymidine; the corresponding triplets are AAT (T allele) and AAC (C allele), respectively, both coding for asparagine. Therefore, this polymorphism has no implication in the primary structure of BCR and BCR-ABL proteins. However, since the alteration is located close to the fusion region it may have a significant influence on the annealing of PCR primers, probes for real time PCR, and antisense oligonucleotides. We have developed a RT-PCR-based screening method to easily identify polymorphic BCR and BCR-ABL alleles in CML patients and normal individuals in order to estimate their frequency. After amplification from cDNA, a melting curve of a specific fluorogenic probe mapping to the 3′ end of BCR exon b2 and spanning the polymorphism readily discriminates between normal and polymorphic BCR and BCR-ABL alleles. This reporter probe is 3′ labeled with fluorescein and placed next to 5′ LC Red640-labeled anchor probes mapping to the 5′ ends of BCR exon b3 or ABL exon a2 so that resonance energy transfer occurs when the probes are hybridized (LightCycler technology). T and C alleles were discriminated by a melting temperature difference of the reporter probe of 3.2 K. We have investigated cDNAs derived from leukocytes from seven cell lines and a total of 229 individuals: normal donors, n = 15; BCR-ABL negative chronic myeloproliferative disorders, n = 30; BCR-ABL negative acute leukemias, n = 11; b2a2BCR-ABL positive CML, n = 93; and b3a2BCR-ABL positive CML, n = 80. The frequency of the C allele was 33.0% in BCR-ABL negative individuals, 30.6% in b2a2BCR-ABL, and 23.8% in b3a2BCR-ABL positive CML. In CML patients, 27.7% of BCR-ABL and 27.2% of BCR alleles had the C allele (NS). In total, 132 of 458 (28.8%) exons b2 of BCR or BCR-ABL alleles demonstrated this polymorphism. We conclude that a thymidine/cytosine replacement occurs frequently in BCR exon b2. Probes for real time quantitative RT-PCR should be designed not to map to the critical region in order to avoid underestimation of the number of BCR-ABL transcripts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G . Structural organization of the bcr gene and its role in the Ph′ translocation Nature 1985 315: 758–761

    Article  CAS  Google Scholar 

  2. Chissoe SL, Bodenteich A, Wang YF, Wang YP, Burian D, Clifton SW, Crabtree J, Freeman A, Iyer K, Jian L, Ma Y, McLaury HJ, Pan HQ, Sarhan OH, Toth S, Wang Z, Zhang G, Heisterkamp N, Groffen J, Roe BA . Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation Genomics 1995 27: 67–82

    Article  CAS  Google Scholar 

  3. Rosenblum-Vos LS, Griffin CA . Identification of a BCR polymorphism in a bone marrow donor: diagnostic implications Leukemia 1998 12: 1499–1500

    Article  CAS  Google Scholar 

  4. Reiter A, Skladny H, Hochhaus A, Seifarth W, Heimpel H, Bartram CR, Cross NCP, Hehlmann R . Molecular response of CML patients treated with interferon-α monitored by quantitative Southern blot analysis Br J Haematol 1997 97: 86–93

    Article  CAS  Google Scholar 

  5. Hochhaus A, Weisser A, La Rosée P, Emig M, Müller MC, Saußele S, Reiter A, Kuhn C, Berger U, Hehlmann R, Cross NCP . Detection and quantification of residual disease in chronic myelogenous leukemia Leukemia 2000 14: 998–1005

    Article  CAS  Google Scholar 

  6. Thijsen SFT, Schuurhuis GJ, van Oostveen JW, Ossenkoppele GJ . Chronic myeloid leukaemia from basics to bedside Leukemia 1999 13: 1646–1674

    Article  CAS  Google Scholar 

  7. Melo JV . The molecular biology of chronic myeloid leukaemia Leukemia 1996 10: 751–756

    CAS  PubMed  Google Scholar 

  8. de V Meissner R, Dias PMB, Covas DT, Job F, Leite M, Nardi NB . A polymorphism in exon b2 of the major breakpoint cluster region (M-bcr) identified in chronic myeloid leukaemia patients Br J Haematol 1998 103: 224–226

    Article  Google Scholar 

  9. Emig M, Saussele S, Wittor H, Weisser A, Reiter A, Willer A, Berger U, Hehlmann R, Cross NCP, Hochhaus A . Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR Leukemia 1999 13: 1825–1832

    Article  CAS  Google Scholar 

  10. Eckert C, Landt O, Taube T, Seeger K, Beyermann B, Proba J, Henze G . Potential of LightCycler technology for quantification of minimal residual disease in childhood acute lymphoblastic leukemia Leukemia 2000 14: 316–323

    Article  CAS  Google Scholar 

  11. Eder M, Battner K, Kafert S, Stucki A, Ganser A, Hertenstein B . Monitoring of BCR-ABL expression using real-time RT-PCR in CML after bone marrow or peripheral blood stem cell transplantation Leukemia 1999 13: 1383–1389

    Article  CAS  Google Scholar 

  12. Preudhomme C, Révillion F, Merlat A, Hornez L, Roumier C, Duflos-Grardel N, Jouet JP, Cosson A, Peyrat JP, Fenaux P . Detection of BCR-ABL transcripts in chronic myeloid leukemia (CML) using a ‘real time’ quantitative RT-PCR assay Leukemia 1999 13: 957–964

    Article  CAS  Google Scholar 

  13. Branford S, Hughes TP, Rudzki Z . Monitoring chronic myeloid leukaemia therapy by real-time quantitative PCR in blood is a reliable alternative to bone marrow cytogenetics Br J Haematol 1999 107: 587–599

    Article  CAS  Google Scholar 

  14. Kronenwett R, Haas R, Sczakiel G . Kinetic selectivity of complementary nucleic acids: bcr/abl-directed antisense RNA and ribozymes J Mol Biol 1996 259: 632–644

    Article  CAS  Google Scholar 

  15. Clark RE . Antisense therapeutics in chronic myeloid leukaemia: the promise, the progress and the problems Leukemia 2000 14: 347–355

    Article  CAS  Google Scholar 

  16. Ririe KM, Rasmussen RP, Wittwer CT . Product differentiation by analysis of DNA melting curves during the polymerase chain reaction Anal Biochem 1997 245: 154–160

    Article  CAS  Google Scholar 

  17. Cross NCP, Feng L, Bungey J, Goldman JM . Minimal residual disease after bone marrow transplant for chronic myeloid leukaemia detected by the polymerase chain reaction Leuk Lymphoma 1993 11: (Suppl. 1) 39–43

    Article  Google Scholar 

  18. Cross NCP, Melo JV, Feng L, Goldman JM . An optimized multiplex polymerase chain reaction (PCR) for detection of BCR-ABL fusion mRNAs in haematological disorders Leukemia 1994 8: 186–189

    CAS  PubMed  Google Scholar 

  19. Schütz E, von Ahsen N . Spreadsheet software for thermodynamic melting point prediction of oligonucleotide hybridization with and without mismatches Biotechniques 1999 27: 1218–1224

    Article  Google Scholar 

  20. Neoh SH, Brisco MJ, Firgaira FA, Trainor KJ, Turner DR, Morley AA . Rapid detection of the factor V Leiden (1691G>A) and haemachromatosis (8456>A) mutation by fluorescence resonance energy transfer (FRET) and real time PCR J Clin Pathol 1999 52: 766–769

    Article  CAS  Google Scholar 

  21. Bernard PS, Ajioka RS, Kushner JP, Wittwer CT . Homogeneous multiplex genotyping of hemochromatosis mutations with fluorescent hybridization probes Am J Pathol 1998 153: 1055–1061

    Article  CAS  Google Scholar 

  22. Aslanidis C, Nauck M, Schmitz G . High-speed detection of the two common α1-antitrypsin deficiency alleles Pi*Z and Pi*S by real-time fluorescence PCR and melting curves Clin Chem 1999 45: 1872–1875

    CAS  PubMed  Google Scholar 

  23. Herrmann MG, Dobrowolski SF, Wittwer CT . Rapid β-globin genotyping by multiplexing probe melting temperature and color Clin Chem 2000 46: 425–428

    CAS  PubMed  Google Scholar 

  24. van Ahsen N, Schütz E, Armstrong VW, Oellerich M . Rapid detection of prothrombotic mutations of prothrombin (G20210A), Factor V (G1691A), and Methylentetrahydrofolate reductase (C677T) by real-time fluorescence PCR with the LightCycler Clin Chem 1999 45: 694–696

    Google Scholar 

  25. Aslanidis C, Nauck M, Schmitz G . High-speed prothrombin G-A 20210 and methylenetetrahydrofolate reductase C-T 677 mutation detection using real-time fluorescence PCR and melting curves Biotechniques 1999 27: 234–238

    Article  CAS  Google Scholar 

  26. Aoshima T, Sekido Y, Miyazaki T, Kajita M, Mimura S, Watanabe K, Shimokata K, Niwa T . Rapid detection of deletion mutations in inherited metabolic diseases by melting curve analysis with LightCycler Clin Chem 2000 46: 119–122

    CAS  PubMed  Google Scholar 

  27. Mensink E, van de Locht A, Schattenberg A, Linders E, Schaap N, Guerts van Kessel A, de Witte T . Quantitation of minimal residual disease in Philadelphia chromosome positive chronic myeloid leukaemia patients using real-time quantitative RT-PCR Br J Haematol 1998 102: 768–774

    Article  CAS  Google Scholar 

  28. Szczylik C, Skorski T, Nicolaides NC, Manzella L, Malaguarnera L, Venturelli D, Gewirtz AM, Calabretta B . Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides Science 1991 253: 562–565

    Article  CAS  Google Scholar 

  29. De Fabritiis P, Skorski T, de Propris MS, Paggi MG, Nieborowska-Skorska M, Lisci A, Buffolino S, Campbell K, Geiser T, Calabretta B . Effect of bcr-abl oligodeoxynucleotides on the clonogenic growth of chronic myelogenous leukaemia cells Leukemia 1997 11: 811–819

    Article  CAS  Google Scholar 

  30. Kearney P, Wright LA, Milliken S, Biggs JC . Improved specificity of ribozyme-mediated cleavage of bcr-abl mRNA Exp Hematol 1995 23: 986–989

    CAS  PubMed  Google Scholar 

  31. Kronenwett R, Steidl U, Kirsch M, Sczakiel G, Haas R . Oligodeoxyribonucleotide uptake in primary human hematopoietic cells is enhanced by cationic lipids and depends on the hematopoietic cell subset Blood 1998 91: 852–862

    CAS  Google Scholar 

  32. De Fabritiis P, Petti MC, Montefusco E, de Propris MS, Sala R, Bellucci R, Mancini M, Lisci A, Bonetto F, Geiser T, Calabretta B, Mandelli F . BCR-ABL antisense oligodeoxynucleotide in vitro purging and autologous bone marrow transplantation for patients with chronic myelogenous leukemia in advanced phase Blood 1998 91: 3156–3162

    CAS  PubMed  Google Scholar 

  33. Smetsers TF, Skorski T, van de Locht LT, Wessels HM, Pennings AH, de Witte T, Calabretta B, Mensink EJ . Antisense BCR-ABL oligonucleotides induce apoptosis in the Philadelphia chromosome-positive cell line BV173 Leukemia 1994 8: 129–140

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our study was supported by grants from the Deutsche José-Carreras-Stiftung eV, the Tumorzentrum Mannheim/ Heidelberg, the Forschungsfonds der Fakultät für Klinische Medizin Mannheim, Germany, and by Roche Diagnostics, Mannheim, Germany. Cell lines BV173, K562, and HL60 were bought from the Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSMZ), Braunschweig, Germany, cDNA from cell lines KCL22, LAMA84, and KG1a was kindly provided by Dr Junia V Melo, Imperial College School of Medicine, London, UK.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saußele, S., Weißer, A., Müller, M. et al. Frequent polymorphism in BCR exon b2 identified in BCR-ABL positive and negative individuals using fluorescent hybridization probes. Leukemia 14, 2006–2010 (2000). https://doi.org/10.1038/sj.leu.2401929

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401929

Keywords

This article is cited by

Search

Quick links