Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Biotechnical Methods Section BTS
  • Published:

Biotechnical Methods Section (BTS)

Differentiation of antigen-presenting cells (dendritic cells and macrophages) for therapeutic application in patients with lymphoma

Abstract

The recent clinical trial in lymphoma using tumor antigen-loaded DCs (Hsu et al, Nature Med 1996; 2: 52) demonstrates the efficiency of the use of professional antigen presenting cells (APCs) for taking up, processing and presenting tumor protein in a vaccine strategy in cancer. However, the production of large quantities of clinical grade APCs remains to be resolved. Here, we describe that both dendritic cells (DCs) and macrophages (MØs) can be efficiently differentiated in large numbers from lymphoma patients in spite of their disease and previous therapy. These cells were produced using the VAC and MAK cell processors according to standard operating procedures. DCs and MØs were differentiated from circulating monocytes in gas permeable hydrophobic bags, with 2% autologous serum and in the presence of GM-CSF and IL-13 or GM-CSF alone, respectively. DCs and MØs were then purified by counter flow centrifugation. Phenotypic, morphological and functional analysis showed that cells differentiated from patients with lymphoma present quite similar features to DCs and MØs produced from monocytes of healthy donors. Moreover, we show that MØs, when combined with CD20 antibody (Rituximab), can efficiently engulf tumor cells and propose that a such combination could be used for initiating a clinical trial in lymphoma. Thus, the possibility of producing functional DC and MØs in large amounts in conditions compatible with therapeutic application will allow the development of new immune strategies to eradicate lymphoma. Leukemia (2000) 14, 1667–1677.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Horning SJ . Natural history of and therapy for the indolent non-Hodgkin’s lymphomas Semin Oncol 1993 20: 75–88

    CAS  PubMed  Google Scholar 

  2. Jacob MC, Piccini MP, Bonnefoix T, Sotto MF, Couderc P, Bensa JC, Sotto JJ . T lymphocytes from invaded lymph nodes in patients with B-cell-derived non-Hodgkin’s lymphoma: reactivity toward the malignant clone Blood 1990 75: 1154–1162

    CAS  PubMed  Google Scholar 

  3. Schwartzentruber DJ, Steler-Stevenson M, Rosenberg SA, Topalian SL . Tumor-infiltrating lymphocytes from select B-cell lymphomas secrete granulocyte–macrophage colony-stimulating factor and tumor necrosis factor-α in response to autologous tumor stimulation Blood 1993 82: 1204–1211

    CAS  PubMed  Google Scholar 

  4. Chaperot L, Delfeau-Larue M-H, Jacob M-C, Molens J-P, Roussel B, Agrawal S, Farcet J-P, Gressin R, Sotto J-J, Bensa J-C, Plumas J . Differentiation of antitumor-specific cytotoxic T lymphocytes from autologous tumor infiltrating lymphocytes in non-Hodgkin’s lymphomas Exp Hematol 1999 27: 1185–1193

    Article  CAS  PubMed  Google Scholar 

  5. Schultze JL, Seamon MJ, Michalak S, Gribben JG, Nadler LM . Autologous tumor infiltrating T cells cytotoxic for follicular lymphoma cells can be expanded in vitro Blood 1997 89: 3806–3816

    CAS  PubMed  Google Scholar 

  6. Plumas J, Jacob MC, Chaperot L, Molens JP, Sotto JJ, Bensa JC . Tumor B cells from non-Hodgkin’s lymphoma are resistant to CD95 (Fas/Apo-1)-mediated apoptosis Blood 1998 91: 2875–2885

    CAS  PubMed  Google Scholar 

  7. Nelson EL, Li X, Hsu FJ, Kwak LW, Levy R, Clayberger C, Krensky AM . Tumor specific cytotoxic T-lymphocyte response after idiotype vaccination for B-cell non-Hodgkin’s lymphoma Blood 1996 88: 580–589

    CAS  PubMed  Google Scholar 

  8. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, Engleman EG, Levy R . Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells Nature Med 1996 2: 52–58

    Article  CAS  PubMed  Google Scholar 

  9. Nestle FO, Alijagic S, Gillet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D . Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells Nature Med 1998 4: 328–332

    Article  CAS  PubMed  Google Scholar 

  10. Höltl L, Rieser C, Papesh C, Ramoner R, Bartsch G, Thurnher M . CD83+ blood dendritic cells as a vaccine for immunotherapy of metastatic renal cell cancer Lancet 1998 352: 1358

    Article  PubMed  Google Scholar 

  11. Brossart P, Bevan MJ . Presentation of exogenous protein antigens on major histocompatability complex class I molecules by dendritic cells: pathway of presentation and regulation by cytokines Blood 1997 90: 1594–1599

    CAS  PubMed  Google Scholar 

  12. Svensson M, Stockinger B, Wick MJ . Bone marrow-derived dendritic cells can process bacteria for MHC-I and MHC-II presentation to T cells J Immunol 1997 158: 4229–4236

    CAS  PubMed  Google Scholar 

  13. Regnault A, Lankar D, Lacabanne V, Rodriguez A, Héry C, Rescigno M, Saito T, Verbeek S, Bonnerot C, Ricciardi-Castagnoli P, Amigorena S . Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization J Exp Med 1999 189: 371–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harding CV, Song R . Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules J Immunol 1994 153: 4925–4933

    CAS  PubMed  Google Scholar 

  15. Kovacsovics-Bankowski M, Rock KL . A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules Science 1995 267: 243–246

    Article  CAS  PubMed  Google Scholar 

  16. Pfeifer JD, Wick MJ, Roberts RL, Findlay K, Normark SJ, Harding CV . Phagocytic processing of bacterial antigens for class I MHC presentation to T cells Nature 1993 361: 359–362

    Article  CAS  PubMed  Google Scholar 

  17. Toujas L, Delcros JG, Diez E, Gervois N, Semana G, Corradin G, Jotereau F . Human monocyte-derived macrophages and dendritic cells are comparably effective in vitro in presenting HLA class I-restricted exogenous peptides Immunology 1997 91: 635–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andreesen R, Hennemann B, Krause SW . Adoptive immunotherapy of cancer using monocyte-derived macrophages: rationale, current status, and perspectives J Leuk Biol 1998 64: 419–426

    Article  CAS  Google Scholar 

  19. Bartholeyns J, Romet Lemonne JL, Chokri M, Lopez M . Immune therapy with macrophages: present status and critical requirements for implementation Immunobiology 1996 195: 550–562

    Article  Google Scholar 

  20. Andreesen R, Scheibenbogen C, Brugger W, Krause S, Meerpohl HG, Leser HG, Engler H, Löhr GW . Adoptive transfer of tumor cytotoxic macrophages generated in vitro from circulating blood monocytes: a new approach to cancer immunotherapy Cancer Res 1990 50: 7450–7456

    CAS  PubMed  Google Scholar 

  21. Eymard JC, Lopez M, Cattan A, Bouche O, Adjizian JC, Bernard J . Phase I/II trial of autologous activated macrophages in advanced colorectal cancer Eur J Cancer 1996 32a: 1905–1911

    Article  CAS  PubMed  Google Scholar 

  22. Lopez M, Fechtenbaum J, David B, Martinache C, Chokri M, Canepa S, De Gramont A, Louvet C, Gorin I, Mortel O et al. Adoptive immunotherapy with activated macrophages grown in vitro from blood monocytes in cancer patients: a pilot study J Immunother 1992 11: 209–217

    Article  CAS  PubMed  Google Scholar 

  23. Ely P, Wallace PK, Givan AL, Graziano RF, Guyre PM, Fanger MW . Bispecific-armed, interferon γ-primed macrophage-mediated phagocytosis of malignant non-Hodgkin’s lymphoma Blood 1996 87: 3813–3821

    CAS  PubMed  Google Scholar 

  24. Chokri M, Girard A, Borrelly MC, Oleron C, Romet-Lemone JL, Bartholeyns J . Adoptive immunotherapy with bispecific antibodies: targeting through macrophages Res Immunol 1992 143: 95–99

    Article  CAS  PubMed  Google Scholar 

  25. Desmedt M, Rootiers P, Dooms H, Fiers W, Grooten J . Macrophages induce cellular immunity by activating Th1 cell responses and suppressing Th2 cell responses J Immunol 1998 160: 5300–5308

    CAS  PubMed  Google Scholar 

  26. Wijburg OLC, van den Dobbelsteen GPJM, Vadolas J, Sanders A, Strugnell RA, van Rooijen N . The role of macrophages in the induction and regulation of immunity elicited by exogenous antigens Eur J Immunol 1998 28: 479–487

    Article  CAS  PubMed  Google Scholar 

  27. Hart DNJ . Dendritic cells: unique leukocyte populations which control the primary immune response Blood 1997 90: 3245–3287

    CAS  PubMed  Google Scholar 

  28. Hsu FJ, Caspar CB, Czerwinski D, Kwak LW, Liles TM, Syrengelas A, TaidiLaskowski B, Levy R . Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma – long-term results of a clinical trial Blood 1997 89: 3129–3135

    CAS  PubMed  Google Scholar 

  29. Murphy G, Tjoa B, Ragde H, Kenny G, Boyton A . Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen Prostate 1996 29: 371–380

    Article  CAS  PubMed  Google Scholar 

  30. Chokri M, Lopez M, Oleron C, Girard A, Martinache C, Canepa S, Siffert JC, Bartholeyns J . Production of human macrophages with potent antitumor properties (MAK) by culture of monocytes in the presence of GM-CSF and 1, 25-dihydroxy vitamin D3 Anticancer Res 1992 12: 2257–2261

    CAS  PubMed  Google Scholar 

  31. Goxe B, Latour N, Bartoleyns J, Romet Lemonne JL, Chokri M . Monocyte-derived dendritic cells: development of a cellular processor for clinical applications Res Immunol 1998 149: 643–646

    Article  CAS  PubMed  Google Scholar 

  32. Boyer A, Andreu G, Romet Lemoine JL, Fridman WH, Teillaud JL . Generation of phagocytic Mak and Mac-DC for therapeutic use: characterization and in vitro functional properties Exp Hematol 1999 27: 751–761

    Article  CAS  PubMed  Google Scholar 

  33. Chaperot L, Plumas J, Jacob M-C, Bost F, Molens J-P, Sotto J-J, Bensa J-C . Functional expression of CD80 and CD86 allows immunogenicity of malignant B cells from non-Hodgkin’s lymphomas Exp Hematol 1999 27: 479–488

    Article  CAS  PubMed  Google Scholar 

  34. Reis e Sousa C, Germain RN . Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis J Exp Med 1995 182: 841–851

    Article  CAS  PubMed  Google Scholar 

  35. Cannon GJ, Swanson JA . The macrophage capacity for phagocytosis J Cell Sci 1992 101: 907–913

    PubMed  Google Scholar 

  36. Inaba K, Inaba M, Naito M, Steinman RM . Dendritic cells progenitors phagocytose particulates, including bacillus Calmette–Guerin organisms, and sensitize mice to mycobacterial antigens in vivo J Exp Med 1993 178: 479–488

    Article  CAS  PubMed  Google Scholar 

  37. Reis e Sousa C, Stahl PD, Austyn JM . Phagocytosis of antigens by langerhans cells in vitro J Exp Med 1993 178: 509–519

    Article  CAS  PubMed  Google Scholar 

  38. Bellone M, Iezzi G, Rovere P, Galati G, Ronchetti A, Protti MP, Davoust J, Rugarli C, Manfredi AA . Processing of engulfed apoptotic bodies yields T cell epitopes J Immunol 1997 159: 5391–5399

    CAS  PubMed  Google Scholar 

  39. Albert ML, Sauter B, Bhardwaj N . Dendritic cells acquire antigen from apoptotic cells and induce class I restricted CTLs Nature 1998 392: 86–89

    Article  CAS  PubMed  Google Scholar 

  40. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM . Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF J Clin Invest 1998 101: 890–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maloney DG, Liles TM, Czerwinski DK, Waldichuk C, Rosenberg J, Grillo Lopez A, Levy R . Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma Blood 1994 84: 2457–2466

    CAS  PubMed  Google Scholar 

  42. Kwak LW, Campbell MJ, Czerwinski DK, Hart S, Miller RA, Levy R . Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors New Engl J Med 1992 327: 1209–1215

    Article  CAS  PubMed  Google Scholar 

  43. Böhm W, Schirmbeck R, Elbe A, Melber K, Diminky D, Kraal G, Van Rooijen N, Barenholz Y, Reimann J . Exogenous hepatitis B surface antigen particles processed by dendritic cells or macrophages prime murine MHC class I restricted cytotoxic T lymphocytes in vivo J Immunol 1995 155: 3313–3321

    PubMed  Google Scholar 

  44. Trinchieri G, Perussia B . Immune interferon: a pleiotropic lymphokine with multiple effects Immunol Today 1985 6: 961–971

    Article  Google Scholar 

  45. Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD, Gilboa E . Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors J Exp Med 1997 186: 1177–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nair SK, Snyder D, Rouse B, Gilboa E . Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts Int J Cancer 1997 70: 706–715

    Article  CAS  PubMed  Google Scholar 

  47. Fields RC, Shimizu K, Mulé JJ . Murine dendritic cells pulsed whith whole tumor lysates mediate potent antitumor immune response in vitro and in vivo Proc Natl Acad Sci USA 1998 95: 9482–9487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dyall R, Vasovic LV, Clynes RA, Nikolic-Zugic J . Cellular requirements for the monoclonal antibody-mediated eradication of an established solid tumor Eur J Immunol 1999 29: 30–37

    Article  CAS  PubMed  Google Scholar 

  49. Fanger NA, Wardwell K, Shen L, Tedder TF, Guyre PM . Type I (CD64) and type II (CD32) Fcgamma receptor-mediated phagocytosis by human blood dendritic cells J Immunol 1996 157: 541–548

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the staff of the blood center immunological and cell therapy departments for their collaboration. This work was supported by grant No. 9336 from ‘Association pour la Recherche sur le cancer’ and by a grant from ‘Ligue Contre le Cancer – Comité de la Savoie’.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaperot, L., Chokri, M., Jacob, MC. et al. Differentiation of antigen-presenting cells (dendritic cells and macrophages) for therapeutic application in patients with lymphoma. Leukemia 14, 1667–1677 (2000). https://doi.org/10.1038/sj.leu.2401888

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401888

Keywords

Search

Quick links