Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

BCR-ABL Studies

Biological effects induced by variable levels of BCR-ABL protein in the pluripotent hematopoietic cell line UT-7

Abstract

There is currently no satisfactory model allowing analysis of dose–effect relationships of BCR-ABL proteins in human hematopoietic cells. To study comparatively the proliferative, differentiative and anti-apoptotic actions of different levels of BCR-ABL proteins in the context of the same cellular background, we have introduced the BCR-ABL gene into the GM-CSF-dependent pluripotent human cell line UT-7. Individual clones expressing BCR-ABL were analyzed by Western blots. After normalization to equivalent levels of endogenous ABL protein, 14 clones always grown in GM-CSF were found to express low but variable levels of BCR-ABL whereas two clones selected in the absence of GM-CSF expressed very high levels of BCR-ABL. All low-level BCR-ABL expressing clones exhibited a behavior similar to that of the GM-CSF-dependent parental cells as they ceased to proliferate upon growth factor deprivation and showed a strong proliferative response upon GM-CSF addition. One out of 14 clones showed progressive GM-CSF independence during culture over several weeks and was found to have a significant increase of BCR-ABL expression at that time. The resistance of this clone (E8–2) to different apoptotic stimuli was found to be increased as compared to its low BCR-ABL-expressing counterpart (E8–1) and similar to that observed in clones with very high levels of BCR-ABL (UT-7/9 and UT-7/11) which were totally resistant to apoptotic stimuli. When injected into nude mice, parental UT-7 cells and clones with low-level of BCR-ABL were not tumorigenic over 10 weeks of observation whereas UT-7 clones with high levels of BCR-ABL (UT-7/9, UT-7/11 and UT-7/E8–2) induced aggressive tumors in 2–4 weeks with a significant correlation between the amount of BCR-ABL protein and the rate of tumor growth. In conclusion, the establishment of an in vitro and in vivo CML model using UT-7 cells suggests for the first time in human cells, that the fully transformed phenotype induced by BCR-ABL requires high levels of BCR-ABL expression. These findings suggest that variable levels of BCR-ABL in primary patient cells could also be responsible for the different phenotypic features seen in chronic and acute phases of CML, such as the differentiation ability induced by growth factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Daley GQ, Baltimore D . Transformation of an interleukin-3 dependent hematopoietic cell line by the chronic myelogenous specific P210 bcr/abl protein Proc Natl Acad Sci USA 1988 85: 9312–9316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kabarowski JH, Allen PB, Wiedemann LM . A temperature sensitive p210 BCR-ABL mutant defines the primary consequences of BCR-ABL tyrosine kinase expression in growth factor dependent cells EMBO J 1994 13: 5887–5895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sirard C, Laneuville P, Dick JE . Expression of bcr-abl abrogates factor-dependent growth of human hematopoietic M07E cells by an autocrine mechanism Blood 1994 83: 1575–1585

    CAS  PubMed  Google Scholar 

  4. Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T . Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway EMBO J 1994 13: 764–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Skorski T, Kanakaraj P, Nieborowska-Skorska M, Ratajczak MZ, Wen SC, Zon G, Gewirtz AM, Perussia B, Calabretta B . Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells Blood 1995 86: 726–736

    CAS  PubMed  Google Scholar 

  6. Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ . Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia J Biol Chem 1994 269: 22925–22928

    CAS  PubMed  Google Scholar 

  7. McGahon A, Bissonnette R, Schmitt M, Cotter KM, Green DR, Cotter TG . BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death Blood 1994 83: 1179–1187

    CAS  PubMed  Google Scholar 

  8. Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ . Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia Blood 1994 83: 2038–2044

    CAS  PubMed  Google Scholar 

  9. Albrecht T, Schwab R, Henkes M, Peschel C, Huber C, Aulitzky WE . Primary proliferating immature myeloid cells from CML patients are not resistant to induction of apoptosis by DNA damage and growth factor withdrawal Br J Haematol 1996 95: 501–507

    Article  CAS  PubMed  Google Scholar 

  10. Amos TA, Lewis JL, Grand FH, Gooding RP, Goldman JM, Gordon MY . Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids Br J Haematol 1995 91: 387–393

    Article  CAS  PubMed  Google Scholar 

  11. Eaves AC, Eaves CJ . Abnormalities in the erythroid progenitor compartments in patients with chronic myelogenous leukemia (CML) Exp Hematol 1979 7: (Suppl. 5) 65–75

    PubMed  Google Scholar 

  12. Issaad C, Vainchenker W . Growth of erythroid colonies in chronic myelogenous leukemia is independent of erythropoietin only in the presence of steel factor Blood 1994 84: 3447–3456

    CAS  PubMed  Google Scholar 

  13. Druker BJ, Tamura S, Buchdunger E, Ohno S, Bagby GC, Segal GM, Fanning S, Zimmermann J, Lydon NB . Effects of a selective inhibitor of the abl tyrosine kinase on the growth of BCR-ABL positive cells Nature Med 1996 2: 561–566

    Article  CAS  PubMed  Google Scholar 

  14. Cambier N, Chopra R, Strasser A, Metcalf D, Elefanty AG . BCR-ABL activates pathways mediating cytokine independence and protection against apoptosis in murine hematopoietic cells in a dose-dependent manner Oncogene 1998 16: 335–348

    Article  CAS  PubMed  Google Scholar 

  15. Komatsu N, Nakauchi H, Miwa A, Ishihara T, Eguchi M, Moroi M, Okada M, Sato Y, Wada H, Yawata Y, Suda T, Miura Y . Establishment and characterization of a human leukemic cell line with megakaryocytic features: dependency on granulocyte–macrophage colony-stimulating factor, interleukin 3, or erythropoietin for growth and survival Cancer Res 1991 51: 341–348

    CAS  PubMed  Google Scholar 

  16. Turhan AG, Eaves CJ, Sutherland HJ, Humphries RK . Retrovirus-mediated transfer of the BCR-ABL (p210) gene to highly purified primitive human hemopoietic cells and the generation of Epo-independent progeny Blood 1991 78: (Suppl. 1) 1341

    Google Scholar 

  17. Hariharan IK, Adams JM, Cory S . bcr-abl oncogene renders myeloid cell line factor independent: potential autocrine mechanism in chronic myeloid leukemia Oncogene Res 1988 3: 387–399

    CAS  PubMed  Google Scholar 

  18. Hawley RG, Lieu FH, Fong AZ, Hawley TS . Versatile retroviral vectors for potential use in gene therapy Gene Therapy 1994 1: 136–138

    CAS  PubMed  Google Scholar 

  19. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C . A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry J Immunol Meth 1991 139: 271–279

    Article  CAS  Google Scholar 

  20. Bowtell DD, Cory S, Johnson GR, Gonda TJ . Comparison of expression in hemopoietic cells by retroviral vectors carrying two genes J Virol 1988 62: 2464–2473

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Artelt P, Grannemann R, Stocking C, Friel J, Bartsch J, Hauser H . The prokaryotic neomycin-resistance-encoding gene acts as a transcriptional silencer in eukaryotic cells Gene 1991 99: 249–254

    Article  CAS  PubMed  Google Scholar 

  22. Clarkson BD, Strife A, Wisniewski D, Lambek C, Carpino N . New understanding of the pathogenesis of CML: a prototype of early neoplasia Leukemia 1997 11: 1404–1428

    Article  CAS  PubMed  Google Scholar 

  23. Matsuguchi T, Salgia R, Hallek M, Eder M, Druker B, Ernst TJ, Griffin JD . Shc phosphorylation in myeloid cells is regulated by granulocyte macrophage colony-stimulating factor, interleukin-3, and steel factor and is constitutively increased by p210BCR/ABL J Biol Chem 1994 269: 5016–5021

    CAS  PubMed  Google Scholar 

  24. Okuda K, Matulonis U, Salgia R, Kanakura Y, Druker B, Griffin JD . Factor independence of human myeloid leukemia cell lines is associated with increased phosphorylation of the proto-oncogene Raf-1 Exp Hematol 1994 22: 1111–1117

    CAS  PubMed  Google Scholar 

  25. Carlesso N, Frank DA, Griffin JD . Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl J Exp Med 1996 183: 811–820

    Article  CAS  PubMed  Google Scholar 

  26. Carpino N, Wisniewski D, Strife A, Marshak D, Kobayashi R, Stillman B, Clarkson B . p62(dok): a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells Cell 1997 88: 197–204

    Article  CAS  PubMed  Google Scholar 

  27. Dai Z, Quackenbush RC, Courtney KD, Grove M, Cortez D, Reuther GW, Pendergast AM . Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway Genes Dev 1998 12: 1415–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eaves AC, Cashman JD, Gaboury LA, Kalousek DK, Eaves CJ . Unregulated proliferation of primitive chronic myeloid leukemia progenitors in the presence of normal marrow adherent cells Proc Natl Acad Sci USA 1986 83: 5306–5310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laneuville P, Sun G, Timm M, Vekemans M . Clonal evolution in a myeloid cell line transformed to interleukin-3 independent growth by retroviral transduction and expression of p210bcr/abl Blood 1992 80: 1788–1797

    CAS  PubMed  Google Scholar 

  30. Guo JQ, Lian J, Glassman A, Talpaz M, Kantarjian H, Deisseroth AB, Arlinghaus RB . Comparison of bcr-abl protein expression and Philadelphia chromosome analyses in chronic myelogenous leukemia patients Am J Clin Pathol 1996 106: 442–448

    Article  CAS  PubMed  Google Scholar 

  31. Guo JQ, Lian JY, Xian YM, Lee MS, Deisseroth AB, Stass SA, Champlin RE, Talpaz M, Wang JY, Arlinghaus RB . BCR-ABL protein expression in peripheral blood cells of chronic myelogenous leukemia patients undergoing therapy Blood 1994 83: 3629–3637

    CAS  PubMed  Google Scholar 

  32. Gisslinger H, Kurzrock R, Wetzler M, Tucker S, Kantarjian H, Robertson B, Talpaz M . Apoptosis in chronic myelogenous leukemia: studies of stage-specific differences Leuk Lymphoma 1997 25: 121–133

    Article  CAS  PubMed  Google Scholar 

  33. Gaiger A, Henn T, Horth E, Geissler K, Mitterbauer G, Maier-Dobersberger T, Greinix H, Mannhalter C, Haas OA, Lechner K, Lion T . Increase of bcr-abl chimeric mRNA expression in tumor cells of patients with chronic myeloid leukemia precedes disease progression Blood 1995 86: 2371–2378

    CAS  PubMed  Google Scholar 

  34. Pierce A, Owen-Lynch PJ, Spooncer E, Dexter TM, Whetton AD . p210 Bcr-Abl expression in a primitive multipotent haematopoietic cell line models the development of chronic myeloid leukaemia Oncogene 1998 17: 667–672

    Article  CAS  PubMed  Google Scholar 

  35. Ahmed M, Dusanter-Fourt I, Bernard M, Mayeux P, Hawley RG, Bennardo T, Novault S, Bonnet ML, Gisselbrecht S, Varet B, Turhan AG . BCR-ABL and constitutively active erythropoietin receptor (cEpoR) activate distinct mechanisms for growth factor-independence and inhibition of apoptosis in Ba/F3 cell line Oncogene 1998 16: 489–496

    Article  CAS  PubMed  Google Scholar 

  36. Kabarowski JH, Allen PB, Wiedemann LM . A temperature sensitive p210 BCR-ABL mutant defines the primary consequences of BCR-ABL tyrosine kinase expression in growth factor dependent cells EMBO J 1994 13: 5887–5895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Biernaux C, Loos M, Sels A, Huez G, Stryckmans P . Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals Blood 1995 86: 3118–3122

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Association de Recherche sur le Cancer (ARC), la Ligue nationale Contre le Cancer, INSERM and Institut Gustave Roussy.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Issaad, C., Ahmed, M., Novault, S. et al. Biological effects induced by variable levels of BCR-ABL protein in the pluripotent hematopoietic cell line UT-7. Leukemia 14, 662–670 (2000). https://doi.org/10.1038/sj.leu.2401730

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401730

Keywords

This article is cited by

Search

Quick links