Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Endothelial Cells

Expression of Flt3-ligand by the endothelial cell

Abstract

Flt3-ligand (FL) is a cytokine that is of paramount importance in the proliferation of primitive hematopoietic progenitors. In this study, we show that endothelial cells (EC) produce large amounts of soluble FL and express a membrane-bound form of the molecule. Bone marrow microvascular EC also produce FL, suggesting that EC are an important source of FL in the bone marrow. High concentrations of FL in EC supernatants contrast with its undetectable levels in long-term bone marrow cultures. A single mRNA for FL is detected, suggesting that soluble FL derives from the membrane-bound species by proteolytic release. FL mRNA is stable with a half-life of about 3 h. II-1α increases FL mRNA levels and membrane and soluble FL expression. Glucocorticoids, known inhibitors for many hematopoietic growth factors do not down-regulate the expression of FL. On the contrary, GC increase the expression of both species of FL. The neutralization of FL in cocultures EC/ hematopoietic progenitors results in an acceleration of the maturation of the progenitors. IFN-α, MIP-1 α and TGF-β stimulate production of membrane-bound and soluble FL. This stimulation is essential to explain their modulatory effect on the generation of clonogenic cells in cocultures EC/hematopoietic progenitors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lyman SD, James L, Vanden-Bos T, de Vries P, Brasel K, Gliniak B, Hollingworth LT, Picha KS, McKenna HJ, Splett RR, Fletcher FA, Maraskovsky E, Farrah T, Foxworthe D, Williams DE, Beckman MP . Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells Cell 1993 75: 1157–1167

    Article  CAS  Google Scholar 

  2. Hannum C, Culpepper J, Campbell D, McClanahan T, Zurawski S, Bazan JF, Kastelein R, Hudak S, Wagner J, Mattson J, Luh J, Duda G, Martina N, Pterson D, Menon S, Shanafelt A, Muench MO, Kelner GS, Namikawa R, Rennick D, Roncarolo MG, Zlotnik A, Rosnet O, Dubreuil P, Birnbaum D, Lee F . Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of hematopoietic stem cells and is encoded by variant RNAs Nature 1994 368: 643–648

    Article  CAS  Google Scholar 

  3. Lyman SD, James L, Johnson L, Brasel K, de Vries P, Escobar SS, Downey H, Splett RR, Beckman MP, McKenna HJ . Cloning of the human homolog of the murine flt3 ligand: a growth factor for early hematopoietic progenitor cells Blood 1994 83: 2795–2801

    CAS  PubMed  Google Scholar 

  4. Small D, Levenstein M, Kim E, Carow C, Amin S, Rockwell P, Witte L, Burrow C, Ratajczak MZ, Gerwitz AM, Civin CI . STK-1 the human homologue of FLK2/FLT3, is selectively expressed in human bone marrow cells and is involved in the proliferation of early progenitor/stem cells Proc Natl Acad Sci USA 1994 91: 459–463

    Article  CAS  Google Scholar 

  5. Jacobsen SE, Okkenhaug C, Myklebust J, Veiby OP, Lyman SD . The FLT3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with interleukin (IL)-11, IL-12 and other hematopoietic growth factors J Exp Med 1995 181: 1357–1363

    Article  CAS  Google Scholar 

  6. Hudak S, Hunte B, Culpepper J, Menon S, Hannum C, Thomson-Snipes L, Rennick D . FLT3/FLK2 ligand promotes the growth of murine stem cells and the expansion of colony-forming cells and spleen colony-forming units Blood 1995 85: 2747–2755

    CAS  PubMed  Google Scholar 

  7. Piacibello W, Fubini L, Sanavio F, Brizzi MF, Severino A, Garetto L, Stacchini A, Pegoraro L, Aglietta M . Effects of human FLT3 ligand on myeloid leukemia cell growth: heterogeneity in response and synergy with other hematopoietic growth factors Blood 1995 86: 4105–4114

    CAS  PubMed  Google Scholar 

  8. Muench MO, Roncarolo MG, Menon S, Xu Y, Kastelein R, Zurawski S, Hannum CH, Culpepper J, Lee F, Namikawa R . FLK2/FLT3 ligand regulates the growth of early myeloid progenitors isolated from human fetal liver Blood 1995 85: 963–972

    CAS  PubMed  Google Scholar 

  9. McKenna HJ, de Vries P, Brasel K, Lyman SD, Williams DE . Effect of flt3 ligand on the ex vivo expansion of human CD34+ hematopoietic progenitors cells Blood 1995 86: 3413–3420

    CAS  PubMed  Google Scholar 

  10. Rusten LS, Lyman SD, Veiby OP, Jacobsen SE . The FLT3 ligand is a direct and potent stimulator of the growth of primitive and committed human CD34+ bone marrow progenitor cells in vitro Blood 1996 87: 1317–1325

    CAS  PubMed  Google Scholar 

  11. Petzer AL, Zandstra PW, Piret JM, Eaves CJ . Differential cytokine effects on primitive (CD34+ CD38−) human hematopoietic cells: novel responses to Flt3-ligand and thrombopoietin J Exp Med 1996 183: 2551–2558

    Article  CAS  Google Scholar 

  12. Ramsfjell V, Borge OJ, Cui L, Jacobsen SE . Thrombopoietin directly and potently stimulates multilineage growth and progenitor cell expansion from primitive (CD34+ CD38−) human bone marrow progenitor cells. Distinct and key interactions with the ligands for c-kit and flt3, and inhibitory effects of TGF-β and TNF-α J Immunol 1997 158: 5169–5177

    CAS  PubMed  Google Scholar 

  13. Piacibello W, Sanavio F, Garetto L, Severino A, Bergandi D, Ferriaro J, Fagioli F, Berger M, Aglietta M . Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood Blood 1997 89: 2644–2653

    CAS  PubMed  Google Scholar 

  14. Zandstra PW, Conneally E, Petzer AL, Piret JM, Eaves CJ . Cytokine manipulation of primitive human hematopoietic cell self-renewal Proc Natl Acad Sci USA 1997 94: 4698–4703

    Article  CAS  Google Scholar 

  15. Mackarehtschian K, Hardin JD, Moore KA, Boast S, Goff SP, Lemischka IR . Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors Immunity 1995 3: 147–161

    Article  CAS  Google Scholar 

  16. Mahon FX, Pigeonnier-Lagarde V, Chahine H, Barbot C, Jazwiec B, Ripoche J, Reiffers J . Ex vivo cytokine expansion of peripheral blood 5-fluorouracil-treated CD34-positive chronic myeloid leukaemia cells increases the selection of Ph-negative cells Br J Haematol 1997 98: 467–473

    Article  CAS  Google Scholar 

  17. Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K, McKenna HJ . Dramatic increase in the number of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cells subpopulations identified J Exp Med 1996 184: 1953–1962

    Article  CAS  Google Scholar 

  18. Lyman SD . Biology of Flt3 ligand and receptor Int J Hematol 1996 62: 63–73

    Article  Google Scholar 

  19. Strobl H, Bello-Fernandez C, Riedl E, Pickl WF, Majdic O, Lyman SD, Knapp W . Flt3 ligand in cooperation with transforming growth factor-β1 potentiates in vitro development of Langerhans-type dendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions Blood 1997 90: 1425–1434

    CAS  PubMed  Google Scholar 

  20. Meierhoff G, Dehmel U, Gruss HJ, Rosnet O, Birnbaum D, Quentmeier H, Dirks W, Drexler HJ . Expression of FLT3 receptor and FLT3-ligand in human leukemia–lymphoma cell lines Leukemia 1995 9: 1368–1372

    CAS  PubMed  Google Scholar 

  21. Lisovsky M, Braun SE, Ge Y, Takahira H, Lu L, Savchenko VG, Lyman SD, Broxmeyer HE . Flt3-ligand production by human bone marrow stromal cells Leukemia 1996 10: 1012–1018

    CAS  PubMed  Google Scholar 

  22. McClanahan T, Culpepper J, Campbell D, Wagner J, Franz-Bacon K, Mattson J, Tsai S, Luh J, Guimaraes MJ, Mattei MG, Rosnet O, Birnbaum D, Hannum CH . Biochemical and genetic characterization of multiple splice variants of the Flt3 ligand Blood 1996 88: 3371–3382

    CAS  PubMed  Google Scholar 

  23. Jaffe EA, Nachman RL, Becker CG, Minick CR . Culture of human endothelial cells derived from umbilical vein. Identification by morphologic and immunologic criteria J Clin Invest 1973 52: 2745–2756

    Article  CAS  Google Scholar 

  24. Rafii S, Shapiro F, Rimarachin J, Nachman RL, Ferris B, Weksler B, Moore MAS, Asch AS . Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoieticprogenitor cells adhesion Blood 1994 84: 10–19

    CAS  PubMed  Google Scholar 

  25. Schweitzer CM, van der Schoot CE, Dräger AM, van der Valk P, Zevenbergen A, Hooibrink B, Westra AH, Langenhuijsen MMAC . Isolation and culture of human bone marrow endothelial cells Exp Hematol 1995 23: 41–48

    CAS  PubMed  Google Scholar 

  26. Rutkowski JL, Cassandra JK, Lerner MA, Tennekoon GI . Purification and expansion of human Schwann cells in vitro Nature Med 1995 1: 80–83

    Article  CAS  Google Scholar 

  27. Schweitzer KM, Vicart P, Delouis C, Paulin D, Dräger AM, Langenhuijsen MMAC, Weksler BB . Characterization of a newly established human bone marrow endothelial cell line: distinct adhesive properties for hematopoietic progenitors compared with human umbilical vein endothelial cells Lab Invest 1997 76: 25–36

    CAS  PubMed  Google Scholar 

  28. Jazwiec B, Solanilla A, Grosset C, Mahon FX, Dupouy M, Pigeonnier-Lagarde V, Belloc F, Schweitzer CM, Reiffers J, Ripoche J . Endothelial cell support of hematopoiesis is differentially altered by IL-1 and glucocorticoids Leukemia 1998 12: 1210–1220

    Article  CAS  Google Scholar 

  29. Chomczynski P, Sacchi N . Single-step method for RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction Anal Biochem 1987 162: 156–159

    Article  CAS  Google Scholar 

  30. Witte ON . Steel locus defines new multipotent growth factor Cell 1990 63: 5–6

    Article  CAS  Google Scholar 

  31. Strobel ES, Gay RE, Greenberg PL . Characterization of the in vitro stromal microenvironment of human bone marrow Int J Cell Cloning 1986 4: 341–356

    Article  CAS  Google Scholar 

  32. Siena S, Castro-Malaspina H, Gulati SC, Lu L, Colvin MO, Clarkson BD, O'Reilly RJ, Moore MA . Effects of in vitro purging with 4-hydroperoxycyclophosphamide on the hematopoietic and microenvironmental elements of human bone marrow Blood 1985 65: 655–662

    CAS  PubMed  Google Scholar 

  33. Slovick FT, Abboud CN, Brennan JK, Lichtman MA . Survival of granulocytic progenitors in the nonadherent and adherent compartments of human long-term marrow cultures Exp Hematol 1984 12: 327–338

    CAS  PubMed  Google Scholar 

  34. Keating A, Singer JW, Killen PD, Striker GE, Salo AC, Sanders J, Thomas ED, Thorning D, Fialkow PJ . Donor origin of the in vitro hematopoietic microenvironment after marrow transplantation in man Nature 1982 298: 280–283

    Article  CAS  Google Scholar 

  35. Toogood IR, Dexter TM, Allen TD, Suda T, Lajtha LG . The development of a liquid culture system for the growth of human bone marrow Leukemia Res 1980 4: 449–461

    Article  CAS  Google Scholar 

  36. Andreoni C, Moreau I, Rigal D . Long-term culture of human bone marrow. I. Characterization of adherent cells in flow cytometry Exp Hematol 1990 18: 431–437

    CAS  PubMed  Google Scholar 

  37. Berneman ZN, Chen ZZ, Ramael M, Van Poucke K, Korthout M, Van Bockstaele DR, Peetermans ME . A quantitative and dynamic study of endothelial cells and megakaryocytes in human long-term bone marrow cultures Leukemia 1989 3: 61–67

    CAS  PubMed  Google Scholar 

  38. Gessani S, MacCandless S, Baglioni C . The glucocorticoid dexamethasone inhibits synthesis of interferon by decreasing the level of its mRNA J Biol Chem 1988 263: 7454–7457

    CAS  PubMed  Google Scholar 

  39. Beutler B, Krochin N, Milsark IW, Luedke C, Cerami A . Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance Science 1986 232: 977–980

    Article  CAS  Google Scholar 

  40. Knudsen PJ, Dinarello CA, Strom TB . Glucocorticoids inhibit transcriptional and posttranscriptional expression of interleukin 1 in U937 cells J Immunol 1987 139: 4129–4134

    CAS  PubMed  Google Scholar 

  41. Tobler A, Meier R, Seitz M, Dewald B, Baggiolini M, Fey MF . Glucocorticoids downregulate gene expression of GM-CSF, NAP-1/IL-8 and IL-6, but not M-CSF in human fibroblasts Blood 1992 79: 45–51

    CAS  PubMed  Google Scholar 

  42. Grosset C, Taupin JL, Lemercier C, Moreau JF, Reiffers J, Ripoche J . Leukemia inhibitory factor expression is inhibited by glucocorticoids through post-transcriptional mechanisms Cytokine 1999 11: 29–36

    Article  CAS  Google Scholar 

  43. Linenberger ML, Jacobson FW, Bennett LG, Broudy VC, Martin FH, Abkowitz JL . Stem cell factor production by human marrow stromal fibroblasts Exp Hematol 1995 23: 1104–1114

    CAS  PubMed  Google Scholar 

  44. Chklovskaia E, Jansen W, Nissen C, Gratwohl A, Lyman SD, Wodnar-Filipowicz A . FLT3 ligand is prestored in T-lymphocytes and is released in response to chemotherapy-induced stem cell depletion Exp Hematol 1997 25: 8 (Abstr.)

    Google Scholar 

  45. Kriegler AB, Bernardo D, Verschoor SM . Protection of murine bone marrow by dexamethasone during cytotoxic chemotherapy Blood 1994 83: 65–71

    CAS  PubMed  Google Scholar 

  46. Aman JM, Keller U, Derigs G, Mohamadzadeh M, Huber C, Peschel C . Regulation of cytokine expression by interferon-α in human bone marrow stromal cells. Inhibition of hematopoietic growth factors and induction of interleukin-1 receptor antagonist Blood 1994 84: 4142–4150

    CAS  PubMed  Google Scholar 

  47. Aman MJ, Bug G, Aulitzky WE, Huber C, Peschel C . Inhibition of interleukin-11 by interferon-alpha in human bone marrow stromal cells Exp Hematol 1996 24: 863–867

    CAS  PubMed  Google Scholar 

  48. Peschel C, Aulitzky WE, Huber C . Influence of interferon-alpha on cytokine expression by the bone marrow microenvironment-Impact on treatment of myeloproliferative disorders LeukLymphoma 1996 22: 129–134

    Google Scholar 

  49. Keller JR, Jacobsen SE, Dubois CM, Hesdal K, Ruscetti FW . Transforming growth factor-beta: a bidirectional regulator of hematopoietic cell growth Int J Cell Cloning 1992 10: 2–11

    Article  CAS  Google Scholar 

  50. Keller JR, Jacobsen SE, Sill KT, Ellingsworth LR, Ruscetti FW . Stimulation of granulopoiesis by transforming growth factor beta: synergy with granulocyte/macrophage-colony-stimulating factor Proc Natl Acad Sci USA 1991 88: 7190–7194

    Article  CAS  Google Scholar 

  51. Keller JR, Bartelmez SH, Sitnicka E, Ruscetti FW, Ortiz M, Gooya JM, Jacobsen SE . Distinct and overlapping direct effects of macrophage inflammatory protein 1-α and transforming growth factor β on hematopoietic progenitor/stem cell growth Blood 1994 84: 2175–2181

    CAS  PubMed  Google Scholar 

  52. Van Ranst PC, Snoeck HW, Lardon F, Lenjou M, Nijs G, Weekx SF, Rodrigus I, Berneman ZN, Van Bockstaele DR . TGF-beta and MIP-1 alpha exert their main inhibitory activity on very primitive CD34+CD38− cells but show opposite effects on more mature CD34+CD38− human hematopoietic progenitors Exp Hematol 1996 24: 1509–1515

    CAS  PubMed  Google Scholar 

  53. Garbe A, Spyridonidis A, Mobest D, Schmoor C, Mertelsmann R, Henschler R . Transforming growth factor-beta 1 delays formation of granulocyte–macrophage colony-forming cells, but spares more primitive progenitors during ex vivo expansion of CD34+ haematopoietic progenitor cells Br J Haematol 1997 99: 951–958

    Article  CAS  Google Scholar 

  54. Broxmeyer HE, Sherry B, Lu L, Cooper S, Oh D, Tekamp-Olson P, Kwon BS, Cerami A . Enhancing and suppressing effects of recombinant murine macrophage inflammatory proteins on colony formation in vitro by bone marrow myeloid progenitor cells Blood 1990 76: 1110–1116

    CAS  PubMed  Google Scholar 

  55. Verfaillie CM, Catanzarro PM, Li WN . Macrophage inhibitory protein 1α, interleukin 3 and diffusible marrow stromal factors maintain human hematopoietic stem cells for at least eight weeks in vitro J Exp Med 1994 179: 643–649

    Article  CAS  Google Scholar 

  56. Koenig A, Yakisan E, Reuter M, Huang M, Sykora KW, Corbacioglu S, Welte K . Differential regulation of stem cell factor mRNA expression in human endothelial cells by bacterial pathogens: an in vitro model of inflammation Blood 1994 83: 2836–2843

    CAS  PubMed  Google Scholar 

  57. Piacibello W, Sanavio F, Garetto L, Severino A, Bergandi D, Ferrario J, Fagioli F, Berger M, Aglietta M . Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood Blood 1997 89: 2644–2653

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr SD Lyman (Immunex, Seattle, Washington) for the gift of recombinant FL and monoclonal anti-FL antibody, helpful comments and drawing our attention to the possible up-regulation of FL-cleaving protease by GC. This work was supported by a grant from the Fondation pour la Recherche Médicale and an ARC fellowship (CG).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solanilla, A., Grosset, C., Lemercier, C. et al. Expression of Flt3-ligand by the endothelial cell. Leukemia 14, 153–162 (2000). https://doi.org/10.1038/sj.leu.2401635

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401635

Keywords

This article is cited by

Search

Quick links