Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of Cell Motility by Cyclic AMP

Abstract

FIBROBLASTS exhibit a locomotory behaviour in cultures on a plane surface. An undulating membrane or leading lamella forms at the frontal edge and may be the locomotory organ of the cell. When the leading lamellae of two cells collide, several events occur. The forward motion of the cells is stopped, the cells contract, the undulations of the membrane cease, and movement proceeds in a different direction. This has been termed contact inhibition of movement1. When cells become confluent, movement is considerably decreased, presumably due to contact on all surfaces, and at confluency there are restrictions on cell growth which are apparently related to the population density of the cells. This has been termed contact or density-dependent inhibition of growth2–4. At present, no strong evidence connects contact inhibition of movement and growth, but as transformation often disturbs both properties a connexion between them may exist3,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Abercrombie, M., and Heaysman, J. E. M., Exp. Cell Res., 6, 293 (1954).

    Article  CAS  Google Scholar 

  2. Golde, A., Virology, 16, 9 (1962).

    Article  CAS  Google Scholar 

  3. Todaro, G. J., Green, H., and Goldberg, B. D., Proc. US Nat. Acad. Sci., 51, 66 (1964).

    Article  ADS  CAS  Google Scholar 

  4. Stoker, M. G. P., and Rubin, H., Nature, 215, 171 (1967).

    Article  ADS  CAS  Google Scholar 

  5. Abercrombie, M., In Vitro, 6, 129 (1970).

    Article  Google Scholar 

  6. Pastan, I., and Perlman, R. L., Nature New Biology, 229, 5 (1971).

    Article  CAS  Google Scholar 

  7. Robison, G. A., Butcher, R. W., and Sutherland, E. W., Ann. Rev. Biochem., 37, 149 (1968).

    Article  CAS  Google Scholar 

  8. Bürk, R. R., Nature, 219, 1272 (1968).

    Article  ADS  Google Scholar 

  9. Johnson, G. S., Friedman, R. M., and Pastan, I., Proc. US Nat. Acad. Sci., 68, 425 (1971).

    Article  ADS  CAS  Google Scholar 

  10. Hsie, A., and Puck, T. T., Proc. US Nat. Acad. Sci., 68, 358 (1971).

    Article  ADS  CAS  Google Scholar 

  11. Sheppard, J. R., Proc. US Nat. Acad. Sci., 68, 1316 (1971).

    Article  ADS  CAS  Google Scholar 

  12. Ryan, W. L., and Heidrick, M. L., Science, 162, 1484 (1968).

    Article  ADS  CAS  Google Scholar 

  13. Otten, J., Johnson, G. S., and Pastan, I., Biochem. Biophys. Res. Commun. (in the press).

  14. Pastan, I., Johnson, G. S., Otten, J., Peery, C. V., and d'Armiento, M., Fed. Proc., 30, 1047 (1971).

    Google Scholar 

  15. Peery, C. V., Johnson, G. S., and Pastan, I., J. Biol. Chem. (in the press).

  16. Sanford, K. K., Earle, W. R., and Likely, G. D., J. Nat. Cancer Inst., 9, 229 (1948).

    CAS  Google Scholar 

  17. Morgan, W. D., and Dawe, C. J., J. Nat. Cancer Inst., 26, 133 (1961).

    CAS  PubMed  Google Scholar 

  18. Morgan, W. D., In Vitro, 2, 126 (1966).

    Google Scholar 

  19. Rose, G. G., Texas Rep. Biol. Med., 12, 1074 (1954).

    CAS  Google Scholar 

  20. McQuilkin, W. T., and Earle, W. R., J. Nat. Cancer Inst., 28, 763 (1962).

    Google Scholar 

  21. Todaro, G. S., Lazar, G., and Green, H., J. Cell Comp. Physiol., 66, 325 (1965).

    Article  CAS  Google Scholar 

  22. Gurney, T., Proc. US Nat. Acad. Sci., 62, 906 (1969).

    Article  ADS  CAS  Google Scholar 

  23. Dulbecco, R., and Stoker, M. G. P., Proc. US Nat. Acad. Sci., 66, 204 (1970).

    Article  ADS  CAS  Google Scholar 

  24. Baker, J. B., and Humphreys, T., Proc. US Nat. Acad. Sci. (in the press).

  25. Carter, S. B., Nature, 213, 261 (1967).

    Article  ADS  CAS  Google Scholar 

  26. Spooner, B. S., Yamada, K. M., and Wessells, N. K., J. Cell Biol., 49, 595 (1971).

    Article  CAS  Google Scholar 

  27. Garbers, D. L., Lust, W. D., First, N. L., and Lardy, H. A., Biochem., 10, 1825 (1971).

    Article  Google Scholar 

  28. Yokota, T., and Gots, J. S., J. Bact., 103, 513 (1970).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

JOHNSON, G., MORGAN, W. & PASTAN, I. Regulation of Cell Motility by Cyclic AMP. Nature 235, 54–56 (1972). https://doi.org/10.1038/235054a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/235054a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing