Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heparin is essential for the storage of specific granule proteases in mast cells

Abstract

All mammals produce heparin, a negatively charged glycosaminoglycan that is a major constituent of the secretory granules of mast cells which are found in the peritoneal cavity and most connective tissues. Although heparin is one of the most studied molecules in the body, its physiological function has yet to be determined. Here we describe transgenic mice, generated by disrupting the N -deacetylase/N -sulphotransferase-2 gene1,2, that cannot express fully sulphated heparin. The mast cells in the skeletal muscle that normally contain heparin lacked metachromatic granules and failed to store appreciable amounts of mouse mast-cell protease (mMCP)-4, mMCP-5 and carboxypeptidase A (mMC-CPA), even though they contained substantial amounts of mMCP-7. We developed mast cells from the bone marrow of the transgenic mice. Although these cultured cells contained high levels of various protease transcripts and had substantial amounts of mMCP-6 protein in their granules, they also failed to express mMCP-5 and mMC-CPA. Our data show that heparin controls, through a post-translational mechanism, the levels of specific cassettes of positively charged proteases inside mast cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of NDST-2-null mice.
Figure 2: Analysis of mast cells in skeletal muscle and ear.
Figure 3: Analysis of mast cells in the jejunum of helminth-infected mice.
Figure 4: RNA blot and SDS–PAGE/immunoblot analysis of mBMMCs.
Figure 5: Histochemistry, immunohistochemistry and SDS–PAGE/immunoblot analysis of fibroblast/mBMMC co-cultures.

Similar content being viewed by others

References

  1. Orellana, A., Hirschberg, C. B., Wei, Z., Swiedler, S. J. & Ishihara, M. Molecular cloning and expression of glycosaminoglycan N-acetylglucosaminyl N-deacetylase/N-sulfotransferase from a heparin-producing cell line. J. Biol. Chem. 269, 2270–2276 (1994).

    CAS  Google Scholar 

  2. Eriksson, I., Sandback, D., Ek, B., Lindahl, U. & Kjellén, I. cDNA cloning and sequencing of mouse mastocytoma glucosaminyl N-deacetylase/N-sulfotransferase, an enzyme involved in the biosynthesis of heparin. J. Biol. Chem. 269, 10439–10443 (1994).

    Google Scholar 

  3. Lindahl, U. & Kjellén, L. in Biology of Proteolgycans (eds Land, D. A. & Lindahl, U.) 159–189 (Edward Arnold, London, (1989).

    Google Scholar 

  4. Hashimoto, Y., Orellana, A., Gil, G. & Hirschberg, C. B. Molecular cloning and expression of rat liver N-heparan sulfate sulfotransferase. J. Biol. Chem. 267, 16744–15750 (1992).

    Google Scholar 

  5. Aikawa, J. & Esko, J. D. Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAc N-deacetylase/N-sulfotransferase family. J. Biol. Chem. 274, 2690–2695 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Stevens, R. L. et al. Intestinal mucosa mast cells from rats infected with Nippostrongylus brasiliensis contain protease-resistant chondroitin sulfate di-B proteoglycans. J. Immunol. 137, 291–295 (1986).

    CAS  PubMed  Google Scholar 

  7. Le Trong, H. et al. Amino acid sequence of a mouse mucosal mast cell protease. Biochemistry 28, 391–395 (1989).

    Article  Google Scholar 

  8. Serafin, W. E. et al. Identification and molecular cloning of a novel mouse mucosal mast cell serine protease. J. Biol. Chem. 265, 423–429 (1990).

    CAS  PubMed  Google Scholar 

  9. Friend, D. S. et al. Mast cells that reside at different locations in the jejunum of mice infected with Trichinella spiralis exhibit sequential changes in their granule ultrastructure and chymase phenotype. J. Cell Biol. 135, 279–290 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Serafin, W. E. et al. Cloning of the cDNA and gene for mouse mast cell protease-4. J. Biol. Chem. 266, 1934–1941 (1991).

    CAS  PubMed  Google Scholar 

  11. Reynolds, D. S., Gurley, D. S., Austen, K. F. & Serafin, W. E. Cloning of the cDNA and gene of mouse mast cell protease-6. J. Biol. Chem. 266, 3847–3853 (1991).

    CAS  PubMed  Google Scholar 

  12. McNeil, H. P., Austen, K. F., Somerville, L. L., Gurish, M. F. & Stevens, R. L. Molecular cloning of the mouse mast cell protease-5 gene. J. Biol. Chem. 266, 20316–20322 (1991).

    CAS  PubMed  Google Scholar 

  13. McNeil, H. P. et al. Isolation, characterization, and transcription of the gene encoding mouse mast cell protease 7. Proc. Natl Acad. Sci. USA 89, 11174–11178 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Lützelschwab, C., Huang, M. R., Kullberg, M. C., Aveskogh, M. & Hellman, L. Characterization of mouse mast cell proteases-8, the first member of a novel subfamily of mouse mast cell serine proteases, distinct from both the classical chymases and tryptases. Eur. J. Immunol. 28, 1022–1033 (1998).

    Article  PubMed  Google Scholar 

  15. Stevens, R. L. et al. Strain-specific and tissue-specific expression of mouse mast cell secretory granule proteases. Proc. Natl Acad. Sci. USA 91, 128–132 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Razin, E., Stevens, R. L., Akiyama, F., Schmid, K. & Austen, K. F. Culture from mouse bone marrow of a subclass of mast cells possessing a distinct chondroitin sulfate proteoglycan with glycosaminoglycans rich in N-acetylgalactosamine-4,6-disulfate. J. Biol. Chem. 257, 7229–7236 (1982).

    CAS  PubMed  Google Scholar 

  17. Levi-Schaffer, F., Austen, K. F., Gravallese, P. M. & Stevens, R. L. Coculture of interleukin 3-dependent mouse mast cells with fibroblasts results in a phenotypic change of the mast cells. Proc. Natl Acad. Sci. USA 83, 6485–6488 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Lindahl, U., Backstrom, G., Thunberg, L. & Leder, I. G. Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombin-binding sequence of heparin. Proc. Natl Acad. Sci. USA 77, 6551–6555 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Sakai, K., Ren, S. & Schwartz, L. B. Anovel heparin-dependent processing pathway for human tryptase, autocatalysis followed by activation with dipeptidyl peptidase I. J. Clin. Invest. 97, 988–995 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McGuire, M., Lipsky, P. E. & Thiele, D. L. Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I. J. Biol. Chem. 268, 2458–2467 (1993).

    CAS  PubMed  Google Scholar 

  21. Leder, L. D. The chloroacetate esterase reaction. A useful means of histological diagnosis of hematological disorders from paraffin sections of skin. Am. J. Dermatopathol. 1, 39–42 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Ghildyal, N., Friend, D. S., Nicodemus, C. F., Austen, K. F. & Stevens, R. L. Reversible expression of mouse mast cell protease 2 mRNA and protein in cultured mast cells exposed to interleukin 10. J. Immunol. 151, 3206–3214 (1993).

    CAS  PubMed  Google Scholar 

  23. McNeil, H., Frenkel, D. P., Austen, K. F., Friend, D. S. & Stevens, R. L. Translation and granule localization of mouse mast cell protease-5: immunodetection with specific antipeptide Ig. J. Immunol. 149, 2466–2472 (1992).

    CAS  PubMed  Google Scholar 

  24. Ghildyal, N. et al. Fate of two mast cell tryptases in V3 mastocytosis and normal BALB/c mice undergoing passive systemic anaphylaxis. Prolonged retention of exocytosed mMCP-6 in connective tissues and rapid accumulation of enzymatically active mMCP-7 in the blood. J. Exp. Med. 184, 1061–1073 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Gurish, M. F. et al. Mouse mast cells that possess segmented/multi-lobular nuclei. Blood 90, 382–390 (1997).

    CAS  PubMed  Google Scholar 

  26. Spiegelman, B. M., Frank, M. & Green, H. Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiaiton-dependent proteins during adipocyte development. J. Biol. Chem. 258, 10083–10089 (1983).

    CAS  PubMed  Google Scholar 

  27. Humphries, D. E., Sullivan, B. M., Aleixo, M. D. & Stow, J. L. Localization of human heparan glucosaminyl N-deacetylase/N-sulphotransferase to the trans -Golgi network. Biochem. J. 325, 351–357 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stevens, R. L. & Austen, K. F. Effect of p-nitrophenyl-β-D -xyloside on proteoglycan and glycosaminoglycan biosynthesis in rat serosal mast cell cultures. J. Biol. Chem. 257, 253–259 (1982).

    CAS  PubMed  Google Scholar 

  29. Saito, H., Yamagata, T. & Suzuki, S. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J. Biol. Chem. 243, 1536–1542 (1968).

    CAS  PubMed  Google Scholar 

  30. Huang, C. et al. Induction of a selective and persistent extravasation of neutrophils into the peritoneal cavity by the tryptase mouse mast cell protease 6. J. Immunol. 160, 1910–1919 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US VA and NIH. The technical assistance of X. Hu is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donald E. Humphries or Richard L. Stevens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humphries, D., Wong, G., Friend, D. et al. Heparin is essential for the storage of specific granule proteases in mast cells. Nature 400, 769–772 (1999). https://doi.org/10.1038/23481

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23481

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing