Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1

Abstract

Localized synthesis of insulin-like growth factors (IGFs) has been broadly implicated in skeletal muscle growth, hypertrophy and regeneration1. Virally delivered IGF-1 genes induce local skeletal muscle hypertrophy and attenuate age-related skeletal muscle atrophy, restoring and improving muscle mass and strength in mice2. Here we show that the molecular pathways underlying the hypertrophic action of IGF-1 in skeletal muscle are similar to those responsible for cardiac hypertrophy. Transfected IGF-1 gene expression in postmitotic skeletal myocytes activates calcineurin-mediated calcium signalling by inducing calcineurin transcripts and nuclear localization of calcineurin protein. Expression of activated calcineurin mimics the effects of IGF-1, whereas expression of a dominant-negative calcineurin mutant or addition of cyclosporin, a calcineurin inhibitor, represses myocyte differentiation and hypertrophy. Either IGF-1 or activated calcineurin induces expression of the transcription factor GATA-2, which accumulates in a subset of myocyte nuclei, where it associates with calcineurin and a specific dephosphorylated isoform of the transcription factor NF-ATc1. Thus, IGF-1 induces calcineurin-mediated signalling and activation of GATA-2, a marker of skeletal muscle hypertrophy, which cooperates with selected NF-ATc isoforms to activate gene expression programs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calcineurin expression and subcellular localization are responsive to postmitotic IGF-1 expression in myogenic cell cultures.
Figure 2: Perturbation of calcineurin action affects hypertrophy in myogenic cell cultures.
Figure 3: Activation of GATA-2 expression in hypertrophic myocytes.
Figure 4: GATA-2 interacts with NF-ATc1 to induce myocyte hypertrophy.

Similar content being viewed by others

References

  1. Florini, J., Ewton, D. & Magri, K. Hormones, growth factors, and myogenic differentiation. Annu. Rev. Physiol. 53, 201– 216 (1991).

    Article  CAS  Google Scholar 

  2. Barton-Davis, E., Shoturma, D. I., Musaro, A., Rosenthal, N. & Sweeney, H. L. Viral mediated expression of IGF-I blocks the aging-related loss of skeletal muscle function. Proc. Natl Acad. Sci. USA 95, 15603 ( 1998).

    Article  ADS  CAS  Google Scholar 

  3. Shimatsu, A. & Rotwein, P. Mosaic evolution of the insulin-like growth factors: organization, sequence, and expression of the rat insulin-like growth factor I gene. J. Biol. Chem. 262, 7894–7900 (1987).

    CAS  PubMed  Google Scholar 

  4. Musaro, A. & Rosenthal, N. Maturation of the myogenic program is induced by post-mitotic expression of IGF-I. Mol. Cell. Biol. 19, 3115–3124 ( 1999).

    Article  CAS  Google Scholar 

  5. Chin, E. et al. Acalcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12, 2499 –2509 (1998).

    Article  CAS  Google Scholar 

  6. Abbot, K., Friday, B. B., Thaloor, D., Murphy, T. J. & Pavlath, G. K. Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells. Mol. Biol. Cell 9, 2905– 2916 (1998).

    Article  Google Scholar 

  7. Molkentin, J. et al. Acalcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215– 228 (1998).

    Article  CAS  Google Scholar 

  8. Crabtree, G. Generic signals and specific outcomes: signaling through Ca2+, calcineurin and NF-AT. Cell 96, 611 –614 (1999).

    Article  CAS  Google Scholar 

  9. Kincaid, R. L. et al. Cloning and characterization of molecular isoforms of the catalytic subunit of calcineurin using nonisotopic methods. J. Biol. Chem. 265, 11312–11319 (1990).

    CAS  PubMed  Google Scholar 

  10. Manalan, A. & Klee, C. Activation of calcineurin by limited proteolysis. Proc. Natl Acad. Sci. USA 80, 4291–4295 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Muramatsu, T. & Kincaid, R. L. Inhibition of NF-AT signal transduction events by dominant-negative form of calcineurin. Biochem. Biophys. Res. Commun. 218, 466–472 (1996).

    Article  CAS  Google Scholar 

  12. Semsarian, C. et al. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin-dependent signalling pathway. Nature 400, 576–581 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Gruver, C. L., DeMayo, F., Goldstein, M. A. & Means, A. R. Targeted developmental overexpression of calmodulin induces proliferative and hypertrophic growth of cardiomyocytes in transgenic mice. Endocrinology 133, 376–388 (1993).

    Article  CAS  Google Scholar 

  14. Wang, Z., Messi, M. L., Renganathan, M. & Delbono, O. Insulin-like growth factor-I enhances rat skeletal muscle charge movement and L-type Ca2+ channel gene expression. J. Physiol. 516, 331–341 (1999).

    Article  CAS  Google Scholar 

  15. Bruton, J., Katz, A. & Westerblad, H. Insulin increases near-membrane but not global Ca2+ in isolated skeletal muscle. Proc. Natl Acad. Sci. USA 96, 3281–3286 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Molkentin, J. D., Lin, Q., Duncan, S. a. & Olson, E. N. Requirement of the transcriptional factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11, 1061– 1072 (1997).

    Article  CAS  Google Scholar 

  17. Hogan, P. G. & Rao, A. Modification by nucle export? Nature 398, 200–201 ( 1999).

    Article  ADS  CAS  Google Scholar 

  18. de la Pompa, J. L. et al. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392, 182–186 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Ranger, A. M. et al. The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392, 186– 190 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Wilson, C. M., Mitsumoto, Y., Maher, F. & Klip, A. Regulation of cell surface GLUT1, GLUT3, and GLUT4 insulin and IGF-1 in L6 myotubes. FEBS Lett. 10, 19–22 (1995).

    Article  Google Scholar 

  21. Mitsumoto, Y., Downey, G. P. & Klip, A. Stimulation of glucose transport in L6 muscle cells by long-term intermittent stretch-relaxation. FEBS Lett. 301, 94–98 (1992).

    Article  CAS  Google Scholar 

  22. Thai, M. V., Guruswamy, S., Cao, K. T., Pessin, J. E. & Olson, A. L. Myocyte enhancer factor 2 (MEF2)-binding site is required for GLUT4 gene expression in transgenic mice. Regulation of MEF2 DNA binding activity in insulin-deficient diabetes. J. Biol. Chem. 273, 14285–14292 (1998).

    Article  CAS  Google Scholar 

  23. Florini, J. R., Ewton, D. Z. & Magri, K. A. Insulin-like growth factor-1 stimulates terminal myogenic differentiation by induction of myogenin gene expression. Mol. Endocrinol. 5, 718–724 (1991).

    Article  CAS  Google Scholar 

  24. Engert, J., Berglund, E. B. & Rosenthal, N. Proliferation precedes differentiation in IGF-I stimulated myogenesis. J. Cell Biol. 135, 431– 440 (1996).

    Article  CAS  Google Scholar 

  25. Nadal-Ginard, B. Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell 15, 855–864 (1996).

    Article  Google Scholar 

  26. Yaffe, D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc. Natl Acad. Sci. USA 61, 477–483 (1968).

    Article  ADS  CAS  Google Scholar 

  27. Loh, C. et al. Calcineurin binds the transcription factor NFAT1 and reversibly regulates its activity. J. Biol. Chem. 271, 10884–10891 (1996).

    Article  CAS  Google Scholar 

  28. Northrop, J. P. et al. NF-AT components define a family of transcription factors targeted in T-cell activation. Nature 369, 497–502 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 368, 855–858 (1997).

    Article  ADS  Google Scholar 

  30. Clipstone, N. A., Fiorentino, D. F. & Crabtree, G. R. Molecular analysis of the interaction of calcineurin with drug–immunophilin complexes. J. Biol. Chem. 269, 26431–26437 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Sweeney, F. McKeon, C. Marks, and members of the Rosenthal laboratory for helpful discussion; A. Rao and G. Crabtree for advice and gifts of NF-AT antibodies; M. McGrew, C.Semsarian and R. Graham for sharing unpublished data; and J. Florini for his original concept and continued insights into the properties of IGF. The study was supported by grants to N.R. from the NIA and NASA, to A.M. from the MDA, and to E.N.O. from the NIH. F.N. was supported by an NIH postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musarò, A., McCullagh, K., Naya, F. et al. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 400, 581–585 (1999). https://doi.org/10.1038/23060

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23060

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing