Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity

Abstract

Oxygen has three naturally occurring isotopes, of mass numbers 16, 17 and 18. Their ratio in atmospheric O2 depends primarily on the isotopic composition of photosynthetically produced O2 from terrestrial and aquatic plants1,2,3, and on isotopic fractionation due to respiration4. These processes fractionate isotopes in a mass-dependent way, such that 17O enrichment would be approximately half of the 18O enrichment relative to 16O. But some photochemical reactions in the stratosphere give rise to a mass-independent isotope fractionation, producing approximately equal 17O and 18O enrichments in stratospheric ozone5 and carbon dioxide6,7, and consequently driving an atmospheric O2 isotope anomaly. Here we present an experimentally based estimate of the size of the 17O/16O anomaly in tropospheric O2, and argue that it largely reflects the influences of biospheric cycling and stratospheric photochemical processes. We propose that because the biosphere removes the isotopically anomalous stratosphere-derived O2 by respiration, and replaces it with isotopically ‘normal’ oxygen by photosynthesis, the magnitude of the tropospheric 17O anomaly can be used as a tracer of global biosphere production. We use measurements of the triple-isotope composition of O2 trapped in bubbles in polar ice to estimate global biosphere productivity at various times over the past 82,000 years. In a second application, we use the isotopic signature of oxygen dissolved in aquatic systems to estimate gross primary production on broad time and space scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Removal of the atmospheric 17O anomaly by biological cycling.
Figure 2: Simplified O2, CO2 and Δ17O cycle.

Similar content being viewed by others

References

  1. Guy, R. D., Fogel, M. L. & Berry, J. A. Photosynthetic fractionation of stable isotopes. Plant. Physiol. 101, 37–47 (1993).

    Article  CAS  Google Scholar 

  2. Dongmann, G. The contribution of land photosynthesis to the stationary enrichment of the 18O in the atmosphere. Radiat. Environ. Biophys. 11, 219–255 (1974).

    Article  CAS  Google Scholar 

  3. Farquhar, G. D. et al. Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature 363, 439–443 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Lane, G. & Dole, M. Fractionation of oxygen isotopes during respiration. Science 123, 574–576 (1956).

    Article  ADS  CAS  Google Scholar 

  5. Schueler, B., Morton, J. & Mauersberger, K. Measurement of isotopic abundances in collected stratospheric ozone samples. Geophys. Res. Lett. 17, 1295–1298 (1990).

    Article  ADS  Google Scholar 

  6. Thiemens, M. H., Jackson, T., Zipf, E. C., Erdman, P. W. & van Egmond, C. Carbon dioxide and oxygen isotope anomalies in the mesosphere and stratosphere. Science 270, 969–972 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Thiemens, M. H., Jackson, T. L. & Brenninkmeijer, C. A. M. Observation of a mass independent oxygen isotopic composition in terrestrial stratospheric CO2, the link to ozone chemistry, and the possible occurrence in the Martian atmosphere. Geophys. Res. Lett. 22, 225–257 (1995).

    Article  ADS  Google Scholar 

  8. Thiemens, M. H. Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341–345 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Li, W. J. & Meijer, H. A. J. The use of electrolysis for accurate δ17O and δ18O isotope measurements in water. Isotopes Environ. Health Studies 34, 349–369 (1998).

    Article  Google Scholar 

  10. Bender, M., Sowers, T. & Labeyrie, L. The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core. Global Biogeochem. Cycles 8, 363–376 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Thiemens, M. H., Jackson, T., Maurersberger, K., Schueler, B. & Morton, J. Oxygen isotope fractionation in stratospheric CO2. Geophys. Res. Lett. 18, 669–672 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Thiemens, M. H. & Jackson, T. Pressure dependency for heavy isotope enhancement in ozone formation. Geophys. Res. Lett. 17, 717–719 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Mauersberger, K., Erbacher, B., Kranowsky, D., Gunther, J. & Nickel, R. Ozone isotope enrichment: Isotopomer-specific rate coefficients. Science 283, 370–372 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Yung, Y. L., Lee, A. Y. T., Irion, F. W., DeMore, W. B. & Wen, J. Carbon dioxide in the atmosphere: Isotopic exchange with ozone and its use as a tracer in the middle atmosphere. J. Geophys. Res. 102, 10857–10866 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Wen, J. & Thiemens, M. H. First multi-isotope study of the O(1D) + CO2exchange and stratospheric consequences. J. Geophys. Res. 98, 12801–12808 (1993).

    Article  ADS  Google Scholar 

  16. Francey, R. J. & Tans, P. P. Latitudinal variations in oxygen-18 of atmospheric CO2. Nature 327, 495–497 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Dole, M. & Jenks, G. Isotopic composition of photosynthetic oxygen. Science 100, 409 (1944).

    Article  ADS  CAS  Google Scholar 

  18. Minschwaner, K., Salawitch, R. J. & McElroy, M. B. Absorption of solar radiation by O2: Implications for O3and lifetimes of N2O, CFCl3, and CF2Cl2. J. Geophys. Res. 98, 10543–10561 (1993).

    Article  ADS  Google Scholar 

  19. Boering, K. A. et al. Stratospheric mean ages and transport rates from observations of carbon dioxide and nitrous oxide. Science 274, 1340–1343 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Holton, J. R. On the global exchange of mass between the stratosphere and the troposphere. J. Atmos. Sci. 47, 392–395 (1990).

    Article  ADS  Google Scholar 

  21. Appenzeller, C., Holton, J. R. & Rosenlof, K. H. Seasonal variation of mass transport across the tropopause. J. Geophys. Res. 101, 15071–15078 (1996).

    Article  ADS  Google Scholar 

  22. Crutzen, P. J. & Bruhl, C. Amodel study of atmospheric temperatures and the concentrations of ozone, hydroxyl, and some other photochemically active gases during the glacial, the pre-industrial Holocene and the Present. Geophys. Res. Lett. 20, 1047–1050 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Martinerie, P., Brasseur, G. P. & Granier, C. The chemical composition of ancient atmospheres: A model study constrained by ice core data. J. Geophys. Res. 100, 14291–14304 (1995).

    Article  ADS  Google Scholar 

  24. Rind, D. & Lacis, A. The role of the stratosphere in climate change. Surv. Geophys. 14, 133–165 (1993).

    Article  ADS  Google Scholar 

  25. Meyer, M. K. Net Primary Productivity Estimates for the Last 18,000 years Evaluated from Simulations by a Global Climate Model.Thesis, Univ. Wisconsin(1988).

    Google Scholar 

  26. Clark, J. F. et al. in Air-Water Gas Transfer (eds Jaehne, B. & Monahan, E. C.) 785–800 (Aeon, Hanau, (1995).

    Google Scholar 

  27. Sowers, T., Bender, M. & Raynaud, D. Elemental and isotopic composition of occluded O2and N2in polar ice. J. Geophys. Res. 94, 5137–5150 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Brenninkmeijer, C. A. M., Lowe, D. C., Manning, M. R., Sparks, R. J. & van Velthoven, P. F. J. The 13C, 14C and 18O isotopic composition of CO, CH4, and CO2in the higher southern latitudes lower stratosphere. J. Geophys. Res. 100, 26163–26172 (1995).

    Article  ADS  Google Scholar 

  29. Barnola, J. M., Pimienta, P., Raynaud, D. & Korotkevich, Y. S. CO2–climate relationship as deduced from the Vostok ice core—A reexamination based on new measurements and on a reevaluation of the air dating. Tellus B 43, 83–90 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We appreciate the help of Y. Yacobi, and thank J. Orchardo and Y. Sagi for help with sample preparation. We thank the USA-Israel BSF, The Israel Science Foundation and the Moshe-Shilo Minerva Center for support; we also thank the Office of Polar Programs of the NSF, and the National Institute of Global Environmental Change, Department of Energy for their support of the ice-core study. M.H.T. thanks the NSF for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boaz Luz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luz, B., Barkan, E., Bender, M. et al. Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. Nature 400, 547–550 (1999). https://doi.org/10.1038/22987

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22987

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing