trainee by a training grant from the National Institutes of Health. We thank Dr Ron Baker for making E. coli T₃A-2 sensitive to S13 and Dr Ethel Tessman for criticisms.

> ANNE S. VANDERBILT IRWIN TESSMAN*

Department of Biological Sciences, Purdue University, Lafayette, Indiana.

* Present address: Department of Molecular Biology and Biochemistry, University of California, Irvine, California.

Received May 11, 1970.

- ¹ Hayashi, M., Hayashi, M. N., and Spiegelman, S., Proc. US Nat. Acad. Sci., 50, 666 (1963).
- ² Jeng, Y., Gelfand, D., Hayashi, M., Shleser, R., and Tessman, E. S., J. Mol. Biol., 49, 521, (1970).
- ³ Brenner, S., Stretton, A. O. W., and Kaplan, S., Nature, 206, 994 (1965).
- 4 Tessman, I., Poddar, R. K., and Kumar, S., J. Mol. Biol., 9, 352 (1964). ⁵ Brenner, S., Barnett, L., Katz., E. R., and Crick, F. H. C., Nature, 213, 449 (1967).
- ⁶ Vanderbilt, A. S., and Tessman, I., Genetics, 61, s60 (1969).
- 7 Tessman, 1., Kumar, S., and Tessman, E. S., Science, 158, 267 (1967).
- ⁸ McClain, W. H., jun., thesis, Purdue Univ. (1968).
- ⁹ Bockrath, R. C., Osborn, M., and Person, S., J. Bacteriol., 96, 146 (1968).
- ¹⁰ Tessman, E. S., Virology, 25, 303 (1965).
- ¹¹ Howard, B. D., and Tessman, I., J. Mol. Biol., 9, 364 (1964).

Specific Inhibition of Influenza **Replication by** α **-Amanitin**

a-AMANITIN, a bicyclic polypeptide from the toadstool Amanita phalloides¹, is known specifically to inhibit the DNA-dependent RNA polymerase of mammalian cells by interaction with the enzyme rather than with the DNA template^{2,3}. No influence of the toxin on the replication of a number of DNA or RNA-containing viruses has been found so far (ref. 4 and personal communication from L. Philipson). Actinomycin, which reacts with the DNA template and so impairs the DNA-dependent RNA polymerase reaction, depresses the multiplication of influenza viruses but does not interfere with the replication of most of the other RNA-containing viruses⁵⁻⁷. Because the mode of action of this antibiotic on the synthesis of influenza viruses is still obscure, we extended our studies to the action of α -amanitin on the multiplication of this virus group.

As a model system for influenza virus the fowl plague virus (FPV) strain "Rostock" and, as a control, a parainfluenza virus (Newcastle disease virus, NDV) wero propagated in chick fibroblasts. The plaque test and the determinations of viral neuraminidase, haemagglutinin and the inner component (RNP-antigen) were performed according to standard methods. Viral plus and minus strand RNA were determined by the hybridization technique⁸. Viral RNA polymerase activity was assayed in a cytoplasmic extract prepared 5 h after infection⁹.

FPV multiplication is inhibited completely by 50 μ g/ml. of α -amanitin, whereas NDV multiplication is not affected (Table 1). FPV replication is even more efficiently blocked when the inhibitor is added to the cultures 2-3 h before infection. This holds true not only for the

Table 1.	DOSE	EFFECT	0F	α -Amanitin	0N	THE	YIELD	\mathbf{OF}	\mathbf{FPV}	AND	NDV

α-Amanitin	HA	units	P.f.u. ×10⁻⁵		
(µg/ml,)	FPV	NDV	FPV	NDV	
0	256	32	110	140	
1	224	32	110	250	
10	32	32	14	150	
25	4	32	8	~	
50	< 2	32	2		
163	< 2	32	1.9	150	

The toxin was added immediately after infection. The cell-associated virus-specific activities were determined 8 h after infection after breaking the cell by freezing and thawing three times.

Table 2. EFFECT OF *a*-AMANITIN ON THE SYNTHESIS OF VIRUS-SPECIFIC RNA *in vivo*, and on the production of other viral components dded

No a-amanitin	25 μg/ml. α-amanitin add 2·5 h before infection
71,500	34,000
5,700	1,700
4,300	320
128	1
33	1.6
64	4
520	38
	α -amanitin 71,500 5,700 4,300 128 33 64

To transmuser units 520 38To each of three FPV-infected cell cultures 100 μ Ci of ⁹H-uridine was added 2.5 h after infection. When σ -amanitin was investigated, 200 μ Ci ⁹H-uridine was investigated. Total RNA was extracted by sodium dodecyl sulphate plus phenol 3.5 h after infection. Viral plus and minus strand RNA was determined by hybridization⁹.

infectivity, but also for the amount of haemagglutinin, neuraminidase and RNP-antigen (Table 2).

Up to 50 μ g/ml. of α -amanitin had no influence on the incorporation of 3H-uridine or 3H-leucine into the corresponding macromolecules of uninfected cells, when the isotopes and the toxin were administered simultaneously. If the pulse was given 3 h after the addition of α -amanitin there was also no significant effect. Six hours after addition of the inhibitor, however, the uptake and phosphorylation of ³H-uridine and RNA and protein synthesis reached only about 50 per cent of the values for untreated cells.

The results in Table 2 demonstrate that a substantial amount of viral plus strand RNA is still being synthesized in conditions when the plaque test indicates a twenty-fold inhibition of FPV multiplication. The production of viral minus strand RNA, however, is barely measurable. A similar result has been obtained recently using mithramycin as an inhibitor of RNA synthesis¹⁰. FPV-specific RNA polymerase, which synthesizes chiefly minus strand RNA¹¹ in vitro, was not inhibited by 180 $\mu g/ml. \alpha$ -amanitin. There is no measurable inactivation of FPV by incubating the virus for 16 h with 60 μ g/ml. a-amanitin at 4° C.

The results indicate that α -amanitin inhibits specifically influenza virus replication without interfering significantly with the overall synthesis of RNA and protein in the host cell. The delayed effect on these activities might be rather a non-specific toxic alteration of the metabolism in our cell system, which is essentially different from the systems used by others^{2,3}. At this time the multiplication cycle of FPV is in any case completed, so that it is not very probable that α -amanitin inhibits influenza virus multiplication by interfering with cellular RNA synthesis as has been discussed for the action of actinomycin^{5,7}. Because much viral RNA is still being synthesized in the presence of α -amanitin, it could be that this inhibitor also affects some step of the translation of viral RNA.

We thank Professor Th. Wieland of the Max-Planck-Institut für Medizinische Forschung, Heidelberg, for a gift of a-amanitin, and Miss H. Krombach and Miss B. Piontek for technical assistance. The work was supported by the Deutsche Forschungsgemeinschaft.

R. Rott

C. Scholtissek

Institut für Virologie, Justus Liebig-Universität, Giessen.

Received February 20, 1970.

- ¹ Wieland, Th., Science, 159, 946 (1968).
- ² Seifart, K. H., and Sekeris, C. E., Z. Naturforsch., 24b, 1538 (1969).
- ³ Jacob, S. T., Sajdel, E. M., and Munro, H. N., Nature, 225, 60 (1969).
 ⁴ Fiume, L., LaPlaca, M., and Portolani, M., Sperimentale, 116, 15 (1966).
- ³ Barry, R. D., Ives, D. R., and Cruickshank, J. G., Nature, **194**, 1139 (1962). ⁶ Rott, R., and Scholtissek, C., Z. Naturforsch., **19b**, 316 (1964).
- ⁷ White, D. O., Day, H. M., Batchelder, E. J., Cheyne, I. M., and Wansbrough, A. J., Virology, 25, 289 (1965).
 ⁸ Scholtissek, C., and Rott, R., Virology, 40, 989 (1970).
- ⁹ Scholtissek, C., and Rott, R., J. Gen. Virol., 5, 283 (1969).

¹⁰ Scholtissek, C., Becht, H., and McPherson, I., J. Gen. Virol., 8, 11 (1970).

¹¹ Scholtissek, C., Biochim. Biophys. Acta, 179, 389 (1969).