Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Abrupt changes in North American climate during early Holocene times

Abstract

Recent studies of the Greenland ice cores have offered many insights into Holocene climatic dynamics at decadal to century timescales1,2,3. Despite the abundance of continental records of Holocene climate, few have sufficient chronological control and sampling resolution to compare with the Greenland findings4. Butannually laminated sediments (varves) from lakes can provide high-resolution continental palaeoclimate data with secure chronologies. Here we present analyses of varved sediments from Deep Lake in Minnesota, USA. Trends in the stable oxygen-isotope composition of the sedimentary carbonate indicate a pronounced climate cooling from 8.9 to 8.3 kyr before present, probably characterized by increased outbreaks of polar air, decreased precipitation temperatures, and a higher fraction of the annual precipitation falling as snow. The abrupt onset of this climate reversal, over several decades, was probably caused by a reorganization of atmospheric circulation and cooling of the Arctic airmass in summer that resulted from the final collapse of the Laurentide ice near Hudson Bay and the discharge of icebergs from the Quebec and Keewatin centres into the Tyrell Sea. The timing and duration of this climate reversal suggest that it is distinct from the prominent widespread cold snap that occurred 8,200 years ago in Greenland and other regions1,5,6. No shifts in the oxygen-isotope composition of sediment carbonate occurred at 8.2 kyr before present at Deep Lake, but varve thickness increased dramatically, probably as a result of increased deposition of aeolian dust. Taken together, our data suggest that two separate regional-scale climate reversals occurred between 9,000 and 8,000 years ago, and that they were driven by different mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Air masses, site locations and lake bathymetry.
Figure 2: Proxy climate data from Deep Lake.
Figure 3: Palaeoclimate records from Deep Lake and Greenland.

Similar content being viewed by others

References

  1. Alley, R.et al. Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology 25, 483–486 (1997).

    Article  ADS  Google Scholar 

  2. Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B. & Raynaud, D. Variations in atmospheric methane concentration during the Holocene Epoch. Nature 374, 46–49 (1995).

    Article  ADS  CAS  Google Scholar 

  3. O'Brien, S. R.et al. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science 270, 1962–1964 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Wright, H. E. Jet al. Global Climate Since the Last Glacial Maximum (Univ. Minnesota Press, Minneapolis, (1993).

    Google Scholar 

  5. von Grafenstein, U., Erlenkeuser, H., Muller, J., Jouzel, J. & Johnsen, S. The cold event 8200 years ago documented in oxygen isotope records of precipitation in Europe and Greenland. Clim. Dyn. 14, 73–81 (1998).

    Article  Google Scholar 

  6. Klitgaard-Kristensen, D., Sejrup, H. P., Haflidason, H., Johnsen, S. & Spurk, M. Aregional 8200 cal. kyr BP cooling event in northwest Europe, induced by final stages of the Laurentide ice-sheet deglaciation? J. Quat. Sci. 13, 165–169 (1998).

    Article  Google Scholar 

  7. Stuiver, M. & Reimer, P. J. Extended 14C age calibration program. Radiocarbon 35, 215–230 (1993).

    Article  Google Scholar 

  8. Hu, F. S., Wright, H. E. J, Ito, E. & Lease, K. Climatic effects of glacial Lake Agassiz in the midwestern United States during the last deglaciation. Geology 25, 207–210 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Teller, J. T. & Clayton, L. Glacial Lake Agassiz (Spec. Pap. 26, Geological Assoc. of Canada, Ottawa, (1983).

    Google Scholar 

  10. Dansgaard, W. Stable isotopes in precipitation. Tellus 5, 461–469 (1964).

    ADS  Google Scholar 

  11. Rozanski, K., Araguas-Araguas, L. & Gonfiantini, R. in Climate Change in Continental Isotopic Records (eds Swart, P. K., Lohmann, K. C., McKenzie, J. & Savin, S.) 1–36 (American Geophysical Union, Washington DC, (1993).

    Google Scholar 

  12. Bryson, R. A. & Hare, F. K. (eds) Climates of North America (Elsevier, New York, (1974).

    Google Scholar 

  13. Simplins, W. W. Isotopic composition of precipitation in central Iowa. J. Hydrol. 172, 185–207 (1995).

    Article  ADS  Google Scholar 

  14. Andrews, J. T. & Falconer, G. Late glacial and postglacial history and emergence of the Ottawa Islands, Hudson Bay, N.W.T.: Evidence on the deglaciation of Hudson Bay. Can. J. Earth Sci. 6, 1263–1276 (1969).

    Article  ADS  Google Scholar 

  15. Hardy, L. La déglaciation et les épisodes lacustre et marin sur les versants de la baie de James. Géogr. Phys. Quat. 31, 261–273 (1977).

    ADS  Google Scholar 

  16. Dyke, A. S. & Prest, V. K. Late Wisconsinan and Holocene history of the Laurentide Ice Sheet. Géogr. Phys. Quat. 41, 237–263 (1987).

    Google Scholar 

  17. Kerwin, M. W. Aregional stratigraphic isochron (ca. 8000 14C B.P.) from the final deglaciation of Hudson Strait. Quat. Res. 46, 89–98 (1996).

    Article  CAS  Google Scholar 

  18. Manabe, S. & Stouffer, R. J. Two stable equilibra of a coupled ocean-atmosphere model. J. Clim. 7, 5–23 (1988).

    Article  ADS  Google Scholar 

  19. de Vernal, A., Hillaire-Marcel, C., von Grafenstein, U. & Barber, D. Researchers look for links among paleoclimate events. Eos 78, 245–256 (1997).

    Article  ADS  Google Scholar 

  20. Kutzbach, J. E. & Webb, T. II in Global Climates since the Last Glacial Maximum (eds Wright, H. E. Jr et al.) 5–11 (Univ. Minnesota Press, Minneapolis, (1993).

    Google Scholar 

  21. Wright, H. E. J Patterns of Holocene climatic change in the midwestern United States. Quat. Res. 38, 129–134 (1992).

    Article  Google Scholar 

  22. Webb, T. II, Bartlein, P. J., Harrison, S. P. & Anderson, K. H. in Global Climates since the Last Glacial Maximum (eds Wright, H. E. Jr et al.) 415–467 (Univ. Minnesota Press, Minneapolis, (1993).

    Google Scholar 

  23. Dean, W. E. & Stuiver, M. in Elk Lake, Minnesota, Evidence for Rapid Climate Change in the North-Central United States (eds Bradbury, J. P. & Dean, W. E.) 163–180 (Spec. Pap. 276, Geological Soc. of America, Boulder, Colorado, (1993).

    Book  Google Scholar 

  24. Laird, K. R., Fritz, S. C., Cumming, B. F. & Grimm, E. C. Early-Holocene limnological and climatic variability in the northern Great Plains. Holocene 8, 275–285 (1998).

    Article  ADS  Google Scholar 

  25. Anderson, R. Y. in Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States (eds Bradbury, J. P. & Dean, W. E.) 45–67 (Spec. Pap. 276, Geological Soc. America, Boulder, Colorado, (1993).

    Book  Google Scholar 

  26. Sprowl, D. R. in Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States (eds Bradbury, J. P. & Dean, W. E.) 69–74 (Spec. Pap. 276, Geological Soc. of America, Boulder, Colorado, (1993).

    Book  Google Scholar 

  27. Barber, D. C.et al. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344–348 (1999).

    Article  ADS  CAS  Google Scholar 

  28. McCrea, J. M. On the isotopic chemistry of carbonates and paleo-temperature scale. J. Chem. Phys. 18, 849–857 (1950).

    Article  ADS  CAS  Google Scholar 

  29. Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. & Jouzel, J. Comparison of oxygen isotope records from GISP2 and GRIP Greenland ice cores. Nature 366, 552–554 (1993).

    Article  ADS  CAS  Google Scholar 

  30. Stuiver, M., Grootes, P. M. & Brazunias, T. F. The GISP2 δ18O record of the past 16,500 years and the role of the Sun, Ocean and volcanoes. Quat. Res. 44, 341–354 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Teranes, B. Ammann, T. A. Brown, W. E. Dean, D. R. Engstrom and C. J. Mock for comments on the manuscript. This work was supported by the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. S. Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, F., Slawinski, D., Wright, H. et al. Abrupt changes in North American climate during early Holocene times. Nature 400, 437–440 (1999). https://doi.org/10.1038/22728

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22728

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing