Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reducing vortex density in superconductors using the ‘ratchet effect’

Abstract

A serious obstacle impeding the application of low- and high-temperature superconductor devices is the presence of trapped magnetic flux1,2: flux lines or vortices can be induced by fields as small as the Earth's magnetic field. Once present, vortices dissipate energy and generate internal noise, limiting the operation of numerous superconducting devices2,3. Methods used to overcome this difficulty include the pinning of vortices by the incorporation of impurities and defects4, the construction of flux ‘dams’5, slots and holes6, and magnetic shields2,3 which block the penetration of new flux lines in the bulk of the superconductor or reduce the magnetic field in the immediate vicinity of the superconducting device. The most desirable method would be to remove the vortices from the bulk of the superconductor, but there was hitherto no known phenomenon that could form the basis for such a process. Here we show that the application of analternating current to a superconductor patterned with an asymmetric pinning potential can induce vortex motion whose direction is determined only by the asymmetry of the pattern. The mechanism responsible for this phenomenon is the so-called ‘ratchet effect’7,8,9,10, and its working principle applies to both low- and high-temperature superconductors. We demonstrate theoretically that, with an appropriate choice of pinning potential, the ratchet effect can be used to remove vortices from low-temperature superconductors in the parameter range required for various applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patterning of a superconductor with an asymmetric potential.
Figure 2: Ratchet velocity of the vortices as a function of the amplitude of the driving force fL.
Figure 3: Removing vortices from a superconductor using an asymmetric potential.

Similar content being viewed by others

References

  1. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, New York, 1996).

    Google Scholar 

  2. Donaldson, G. B., Pegrum, C. M. & Bain, R. J. P. in SQUID '85: Proc. 3rd Int. Conf. on Superconducting Quantum Devices (eds Hahlbohm, H. D. & Lübbig, H.) 749–753 (Walter Gruyter, Berlin, 1985).

    Google Scholar 

  3. Clarke, J. Superconducting Devices (eds Ruggiero, S. T. & Rudman, D. A.) 51–100 (Academic, 1990).

    Book  Google Scholar 

  4. Blatter, G., Feigelman, M. V., Geshkenbeim, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Koch, R. H., Sun, J. Z., Foglietta, V. & Gallagher, W. J. Flux dam, a method to reduce extra low-frequency noise when a superconducting magnetometer is exposed to a magnetic field. Appl. Phys. Lett. 67, 709–711 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Dantsker, E., Tanaka, S. & Clarke, J. High-Tcsuperconducting quantum interference devices with slots or holes: low 1/f noise in ambient magnetic fields. Appl. Phys. Lett. 70, 2037–2039 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Magnasco, M. O. Forced thermal ratchet. Phys. Rev. Lett. 71, 1477–1481 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Astumian, R. D. Thermodynamics and kinetics of a brownian motor. Science 276, 917–922 (1997).

    Article  CAS  Google Scholar 

  9. Jülicher, F., Ajdari, A. & Prost, J. Modeling molecular motors. Rev. Mod. Phys. 69, 1269–1281 (1997).

    Article  ADS  Google Scholar 

  10. Hänggi, P. & Bartussek, R. in Lecture Notes in PhysicsVol. 476 (eds Parisi, J. et al.) 294–308 (Springer, Berlin, 1996).

    Google Scholar 

  11. Clem, J. R., Huebener, R. P. & Gallus, D. E. Gibbs free-energy barrier against irreversible magnetic flux entry into a superconductor. J. Low Temp. Phys. 12, 449–477 (1973).

    Article  ADS  Google Scholar 

  12. Mück, M. Practical aspects for SQUID applications. Superlattices Microstruct. 21, 415–421 (1997).

    Article  ADS  Google Scholar 

  13. Scott, B. A., Kirtley, J. R., Walker, D., Chen, B.-H. & Wang, Y. Application of scanning SQUID petrology to high-pressure materials science. Nature 389, 164–167 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Rousselet, J., Salome, L., Ajdari, A. & Prost, J. Directional motion of brownian particles induced by a periodic asymmetric potential. Nature 370, 446–448 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Faucheux, L. P., Bourdieu, L. S., Kaplan, P. D. & Libchaber, A. J. Optical thermal ratchet. Phys. Rev. Lett. 74, 1504–1507 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Kelly, T. R., Silva, H. D. & Silva, R. A. Arationally designed molecular motor. Nature(submitted).

  17. Derényi, I., Lee, C.-S. & Barabási, A.-L. Ratchet effect in surface electromigration: smoothing surfaces by an AC field. Phys. Rev. Lett. 80, 1473–1476 (1998).

    Article  ADS  Google Scholar 

  18. Zapata, I., Bartussek, R., Sols, F. & Hänggi, P. Voltage rectification by a SQUID ratchet. Phys. Rev. Lett. 77, 2292–2295 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Zapata, I., Luczka, J., Sols, F. & Hängii, P. Tunneling center as a source of voltage rectification in Josephson junctions. Phys. Rev. Lett. 80, 829–832 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Reichhardt, C., Olson, C. J. & Nori, F. Nonequilibrium dynamic phases and plastic flow of driven vortex lattices in superconductors with periodic arrays of pinning sites. Phys. Rev. B 58, 6534–6564 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Reichhardt, C., Olson, C. J. & Nori, F. Dynamic phases of vortices in superconductors with periodic pinning. Phys. Rev. Lett. 78, 2648–2651 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Olson, C. J., Reichhardt, C. & Nori, F. Nonequilibrium dynamic phase diagram for vortex lattices. Phys. Rev. Lett. 81, 3757–3760 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Zeldov, E.et al. Geometrical barriers in high-temperature superconductors. Phys. Rev. Lett. 73, 1428–1431 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. D. Astumian, D. J. Bishop, S. N. Coppersmith, D. Grier, H. Jeong, A.Koshelev and S. T. Ruggiero for discussions and help during the preparation of the manuscript. This research was supported by an NSF Career Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-L. Barabási.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CS., Jankó, B., Derényi, I. et al. Reducing vortex density in superconductors using the ‘ratchet effect’. Nature 400, 337–340 (1999). https://doi.org/10.1038/22485

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22485

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing