Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dual modes of the carbon cycle since the Last Glacial Maximum

Abstract

The most conspicuous feature of the record of past climate contained in polar ice is the rapid warming which occurs after long intervals of gradual cooling. During the last four transitions from glacial to interglacial conditions, over which such abrupt warmings occur, ice records indicate that the CO2 concentration of the atmosphere increased by roughly 80 to 100 parts per million by volume (14). But the causes of the atmospheric CO2 concentration increases are unclear. Here we present the stable-carbon-isotope composition (δ13CO2) of CO2 extracted from air trapped in ice at Taylor Dome, Antarctica, from the Last Glacial Maximum to the onset of Holocene times. The global carbon cycle is shown to have operated in two distinct primary modes on the timescale of thousands of years, one when climate was changing relatively slowly and another when warming was rapid, each with a characteristic average stable-carbon-isotope composition of the net CO2 exchanged by the atmosphere with the land and oceans. δ13CO2 increased between 16.5 and 9 thousand years ago by slightly more than would be estimated to be caused by the physical effects of a 5 °C rise in global average sea surface temperature driving a CO2 efflux from the ocean, but our data do not allow specific causes to be constrained.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: δ13CO2 and CO2-concentration trends.
Figure 2: Mixing diagram for Taylor Dome samples: 1/[CO2] is plotted against δ13CO2.

Similar content being viewed by others

References

  1. Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Vostok ice core provides 160,000-year record of atmospheric CO2. Nature 329, 408–414 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Neftel, A., Oeschger, H., Staffelbach, T. & Stauffer, B. CO2record in the Byrd ice core 50,000–5,000 years BP. Nature 331, 609–611 (1988).

    Article  ADS  Google Scholar 

  3. Fischer, H., Wahlen, M., Smith, H. J., Mastroianni, D. & Deck, B. Ice core records of atmospheric CO2around the last three glacial terminations. Science 283, 1712–1714 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Marino, B., McElroy, M. B., Salawitch, R. J. & Spaulding, W. G. Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2. Nature 357, 461–466 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Anklin, M., Barnola, J.-M., Schwander, J., Stauffer, B. & Raynaud, D. Processes affecting the CO2concentrations measured in Greenland ice. Tellus B 47, 461–470 (1995).

    Article  ADS  Google Scholar 

  7. Delmas, R. J. Anatural artefact in Greenland ice core CO2measurements. Tellus B 45, 391–396 (1993).

    Article  ADS  Google Scholar 

  8. Barnola, J. M. et al. CO2evolution during the last millennium as recorded by Antarctic and Greenland ice. Tellus B 47, 264–272 (1995).

    Article  ADS  Google Scholar 

  9. Indermühle, A. et al. Holocene carbon-cycle dynamics based on CO2trapped in ice at Taylor Dome, Antarctica. Nature 398, 121–126 (1999).

    Article  ADS  Google Scholar 

  10. Fairbanks, R. G. The age and origin of the “Younger Dryas Climate Event” in Greenland ice cores. Paleoceanography 5, 937–948 (1990).

    Article  ADS  Google Scholar 

  11. Leuenberger, M., Siegenthaler, U. & Langway, C. C. Carbon isotope composition of atmospheric CO2during the last ice age from an Antarctic ice core. Nature 357, 488–490 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Tans, P. P., Berry, J. A. & Keeling, R. F. Oceanic 13C/12C observations: a new window on ocean CO2uptake. Glob. Biogeochem. Cycles 7, 353–368 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Friedli, H., Lotscher, H., Oeschger, H., Siegenthaler, U. & Stauffer, B. Ice core record of the 13C/12C of atmospheric CO2in the past two centuries. Nature 324, 237–238 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Broecker, W. S. & Henderson, G. M. The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2changes. Paleoceanography 13, 352–364 (1998).

    Article  ADS  Google Scholar 

  15. Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W. & Sutherland, S. C. Seasonal variation of CO2and nutrients in the high-latitude surface oceans: a comparative study. Glob. Biogeochem. Cycles 7, 843–878 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Mook, W. G., Bommerson, J. C. & Staverman, W. H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett. 22, 169–176 (1974).

    Article  ADS  CAS  Google Scholar 

  17. Weiss, R. F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203–215 (1974).

    Article  CAS  Google Scholar 

  18. Guilderson, T. P., Fairbanks, R. G. & Rubenstone, J. L. Tropical temperature variations since 20,000 years ago: modulating interhemispheric climate change. Science 263, 663–665 (1994).

    Article  ADS  CAS  Google Scholar 

  19. CLIMAP Project Members Seasonal Reconstructions of the Earth's Surface at the Last Glacial Maximum ( Map and Chart Ser., MC-3, Geol. Soc. Am., Boulde, (1981).

    Google Scholar 

  20. Fairbanks, R. G. A17,000-year glacio-eustatic sea level record—influence of glacial melting rates on the Younger Dryas Event and deep-ocean circulation. Nature 342, 637–642 (1989).

    Article  ADS  Google Scholar 

  21. Duplessy, J. C. et al. Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3, 343–360 (1988).

    Article  ADS  Google Scholar 

  22. Wahlen, M., Allen, D. & Deck, B. Initial measurements of CO2concentrations (1530 to 1940 AD) in air occluded in the GISP 2 ice core from central Greenland. Geophys. Res. Lett. 18, 1457–1460 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Smith, H. J., Wahlen, M., Mastroianni, D. & Taylor, K. C. The CO2concentration of air trapped in GISP2 ice from the LGM-Holocene transition. Geophys. Res. Lett. 24, 1–4 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Craig, H. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12, 133–149 (1957).

    Article  ADS  CAS  Google Scholar 

  25. Craig, H., Horibe, Y. & Sowers, T. Gravitational separation of gases and isotopes in polar ice caps. Science 242, 1675–1678 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Schwander, J. The Environmental Record in Glaciers and Ice Sheets (eds Oeschger, H. and Langway, C. C.) 53–67 (Wiley and Sons, New York, (1989).

    Google Scholar 

  27. Sucher, C. Trapped Gases in the Taylor Dome Ice Core: Implications for East Antarctic Climate Change. Thesis, Univ. Rhode Island(1997).

    Google Scholar 

  28. Sowers, T. & Bender, M. Elemental and isotopic composition of occluded O2and N2in polar ice. J. Geophys. Res. 94, 5137–5150 (1989).

    Article  ADS  CAS  Google Scholar 

  29. Leuenberger, M. & Siegenthaler, U. Ice-age atmospheric concentration of nitrous oxide from an Antarctic ice core. Nature 360, 449–451 (1988).

    Article  ADS  Google Scholar 

  30. Steig, E. J. et al. Synchronous climate changes in Antarctica and the North Atlantic. Science 282, 92–95 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Hargreaves and J. Fitzpatrick for help obtaining samples, and E. Steig and E. Brook for sharing their depth-age scales. This work was supported by the NSF and the Director's office at the Scripps Institution of Oceanography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jesse Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, H., Fischer, H., Wahlen, M. et al. Dual modes of the carbon cycle since the Last Glacial Maximum. Nature 400, 248–250 (1999). https://doi.org/10.1038/22291

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22291

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing