Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation

Abstract

Chromosomes are segregated by two antiparallel arrays of microtubules arranged to form the spindle apparatus. During cell division, the nucleation of cytosolic microtubules is prevented and spindle microtubules nucleate from centrosomes (in mitotic animal cells) or around chromosomes (in plants and some meiotic cells)1,2. The molecular mechanism by which chromosomes induce local microtubule nucleation in the absence of centrosomes is unknown3,4,5, but it can be studied by adding chromatin beads to Xenopus egg extracts6. The beads nucleate microtubules that eventually reorganize into a bipolar spindle. RCC1, the guanine-nucleotide-exchange factor for the GTPase protein Ran, is a component of chromatin. Using the chromatin bead assay, we show here that the activity of chromosome-associated RCC1 protein is required for spindle formation. Ran itself, when in the GTP-bound state (Ran-GTP), induces microtubule nucleation and spindle-like structures in M-phase extract. We propose thatRCC1 generates a high local concentration of Ran-GTP around chromatin which in turn induces the local nucleation of microtubules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GTP-bound Ran signals microtubule assembly in M-phase extracts.
Figure 2: Local RCC1 activity is required for chromatin-induced microtubule assembly.
Figure 3: A uniform increase in RanGTP concentration uncouples microtubule assembly from chromatin beads.
Figure 4: A model for the induction of local microtubule growth.

Similar content being viewed by others

References

  1. Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. Amodel for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 8, 903–913 (1998).

    Article  CAS  Google Scholar 

  2. Hoyt, M. A. & Geiser, J. R. Genetic analysis of the mitotic spindle. Annu. Rev. Genet. 30, 7–33 (1996).

    Article  CAS  Google Scholar 

  3. Karsenti, E., Newport, J. & Kirschner, M. The respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. J. Cell Biol. 99, 47s–54s (1984).

    Article  CAS  Google Scholar 

  4. Karsenti, E., Newport, J., Hubble, R. & Kirschner, M. Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs. J. Cell Biol. 98, 1730–1745 (1984).

    Article  CAS  Google Scholar 

  5. Hyman, A. & Karsenti, E. The role of nucleation in patterning microtubule networks. J. Cell Sci. 111, 2077–2083 (1998).

    CAS  PubMed  Google Scholar 

  6. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Koepp, D. M. & Silver, P. A. AGTPase controlling nuclear trafficking: running the right way or walking randomly. Cell 87, 1–4 (1996).

    Article  CAS  Google Scholar 

  8. Görlich, D. Transport into and out of the cell nucleus. EMBO J. 17, 2721–2727 (1998).

    Article  Google Scholar 

  9. Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265–306 (1998).

    Article  CAS  Google Scholar 

  10. Nakamura, M. et al. When overexpressed, a novel centrosomal protein, RanBPM, causes ectopic microtubule nucleation similar to γ-tubulin. J. Cell Biol. 143, 1041–1052 (1998).

    Article  CAS  Google Scholar 

  11. Bischoff, F. R., Klebe, C., Kretschmer, J., Wittinghofer, A. & Ponstingl, H. RanGAP1 induces GTPase activity of nuclear ras-related Ran. Proc. Natl Acad. Sci. USA 91, 2587–2591 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Klebe, C., Bischoff, F. R., Ponstingl, H. & Wittinghofer, A. Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry 34, 639–647 (1995).

    Article  CAS  Google Scholar 

  13. Ullrich, O., Reinsch, S., Urbé, S., Zerial, M. & Parton, R. G. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135, 913–924 (1996).

    Article  CAS  Google Scholar 

  14. Palacios, I., Weis, K., Klebe, C., Mattaj, I. W. & Dingwall, C. Ran/TC4 mutants identify a common requirement for snRNP and protein import into the nucleus. J. Cell Biol. 133, 485–494 (1996).

    Article  CAS  Google Scholar 

  15. Görlich, D., Panté, N., Kutay, U., Aebi, U. & Bischoff, F. R. Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J. 15, 5584–5594 (1996).

    Article  Google Scholar 

  16. Izaurralde, E., Kutay, U., von Kobbe, C., Mattaj, I. W. & Görlich, D. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J. 16, 6535–6547 (1997).

    Article  CAS  Google Scholar 

  17. Dasso, M., Seki, T., Azuma, Y., Ohba, T. & Nishimoto, T. Amutant form of the Ran/TC4 protein disrupts nuclear function in Xenopus laevis egg extracts by inhibiting the RCC1 protein, a regulator of chromosome condensation. EMBO J. 13, 5732–5744 (1994).

    Article  CAS  Google Scholar 

  18. Dasso, M., Nishitani, H., Kornbluth, S., Nishimoto, T. & Newport, J. W. RCC1, a regulator of mitosis, is essential for DNA replication. Mol. Cell. Biol. 12, 3337–3345 (1992).

    Article  CAS  Google Scholar 

  19. Saitoh, H., Pu, R., Cavenagh, M. & Dasso, M. RanBP2 associated with Ubc9p and a modified form of RanGAP1. Proc. Natl Acad. Sci. USA 94, 3736–3741 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Pu, R. T. & Dasso, M. The balance of RanBP1 and RCC1 is critical for nuclear assembly and nuclear transport. Mol. Biol. Cell 8, 1955–1970 (1997).

    Article  CAS  Google Scholar 

  21. Heald, R., Tournebize, R., Habermann, A., Karsenti, E. & Hyman, A. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J. Cell Biol. 138, 615–628 (1997).

    Article  CAS  Google Scholar 

  22. Andersen, S. S. et al. Mitotic chromatin regulates phosphorylation of Stathmin/Op18. Nature 389, 640–643 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Kutay, U., Izaurralde, E., Bischoff, F. R., Mattaj, I. W. & Görlich, D. Dominant-negative mutants of importin-β block multiple pathways of import and export through the nuclear pore complex. EMBO J. 16, 1153–1163 (1997).

    Article  CAS  Google Scholar 

  24. Weis, K., Dingwall, C. & Lamond, A. I. Characterization of the nuclear protein import mechanism using Ran mutants with altered nucleotide binding specificities. EMBO J. 15, 7120–7128 (1996).

    Article  CAS  Google Scholar 

  25. Murray, A. in Xenopus laevis: Practical Uses in Cell and Molecular Biology (eds Kay, B. K. & Peng, H. B.) 581–605 (Academic, San Diego, (1991).

    Book  Google Scholar 

  26. Lepault, J. & Dubochet, J. Electron microscopy of frozen hydrated specimens: preparation and characteristics. Meth. Enzymol. 127, 719–730 (1986).

    Article  CAS  Google Scholar 

  27. Nicolás, F. et al. Xenopus Ran-binding protein I: molecular interactions and effects on nuclear assembly in Xenopus egg extracts. J. Cell Sci. 110, 3019–3030 (1997).

    PubMed  Google Scholar 

  28. Clarke, P. R., Klebe, C., Wittinghofer, A. & Karsenti, E. Regulation of Cdc2/cyclin B activation by Ran, a Ras-related GTPase. J. Cell Sci. 108, 1217–1225 (1994).

    Google Scholar 

  29. Domínguez, J. E. et al. Aprotein related to brain microtubule-associated protein MAP1B is a component of the mammalian centrosome. J. Cell Sci. 107, 601–611 (1994).

    PubMed  Google Scholar 

  30. Wittmann, T., Boleti, H., Antony, C., Karsenti, E. & Vernos, I. Localization of the kinesin-like protein xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol. 143, 673–685 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Dasso for antibodies and for discussing unpublished data; C. Klebe and A. Wittinghofer for pETRCC1; B. Soennichsen, M. Zerial, M. Fornerod, M. Ohno, G.-J. Arts and D.Bilbao-Cortes for Rab and Ran proteins; T. Surrey for participating in the ‘ethane trick’; and T.Wittmann and our colleagues for discussion and encouragement. G.G. was supported by a fellowship from the MURST Italian Ministry of Public Education and by an EMBO short-term fellowship, and O.J.G. was supported by an HFSPO award to I.W.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain W. Mattaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carazo-Salas, R., Guarguaglini, G., Gruss, O. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400, 178–181 (1999). https://doi.org/10.1038/22133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22133

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing