Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts

Abstract

Photosynthetic organisms have a variety of accessory pigments, on which their classification has been based. Despite this variation, it is generally accepted that all chloroplasts are derived fromasingle cyanobacterial ancestor1,2,3. How the pigment diversity has arisen is the key to revealing their evolutionary history. Prochlorophytes are prokaryotes which perform oxygenic photosynthesis using chlorophyll b, like land plants and green algae (Chlorophyta), and were proposed to be the ancestors of chlorophyte chloroplasts4,5. However, three known prochlorophytes (Prochloron didemni, Prochlorothrix hollandica and Prochlorococcus marinus) have been shown to be not the specific ancestors of chloroplasts, but only diverged members of the cyanobacteria, which contain phycobilins but lack chlorophyll b6,7. Consequently it has been proposed that the ability to synthesize chlorophyll b developed independently several times in prochlorophytes and in the ancestor of chlorophytes. Here we have isolated the chlorophyll b synthesis genes (chlorophyll a oxygenase)8 from two prochlorophytes and from major groups of chlorophytes. Phylogenetic analyses show that these genes share a common evolutionary origin. This indicates that the progenitors of oxygenic photosynthetic bacteria, including the ancestor of chloroplasts, had both chlorophyll b and phycobilins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alignment of CAO amino-acid sequences from chlorophytes A.
Figure 2: Phylogenetic relationships of prochlorophytes and chlorophytes inferred from CAO amino-acid sequences.
Figure 3: Hypothetical scheme for the evolution of oxygenic photosynthetic prokaryotes and eukaryotes from the common ancestor containing chlorophyl.

Similar content being viewed by others

References

  1. Delwiche, C. F. & Palmer, J. D. in Origins of the Algae and Their Plastids (ed. Bhattacharya, D.) 53–96 (Springer, Wien, Germany, (1997).

    Book  Google Scholar 

  2. Bhattacharya, D. & Medlin, L. Algal phylogeny and the origin of land plants. Plant Physiol. 116, 9–15 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  3. Wolfe, G. R. et al. Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367, 566–568 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Lewin, R. A. & Withers, N. W. Extraordinary pigment composition of a prokaryotic alga. Nature 256, 735–737 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Lewin, R. A. Prochlorophyta as a proposed new division of algae. Nature 261, 697–698 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Palenik, B. & Haselkorn, R. Multiple evolutionary origins of prochlorophytes, the chlorophyll b -containing prokaryotes. Nature 355, 265–267 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Urbach, E., Robertson, D. L. & Chisholm, S. W. Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355, 267–270 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Tanaka, A. et al. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc. Natl Acad. Sci. USA 95, 12719–12723 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rüdiger, W. et al. in The Chloroplast: From Molecular Biology to Biotechnology (eds Argyroudi-Akoyunoglou, J. H. & Senger, H.) 185–190 (Kluwer, Netherlands, (1999).

    Book  Google Scholar 

  10. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  12. Caliebe, A. et al. The chloroplastic protein import machinery contains a Rieske-type iron-sulfur cluster and a mononuclear iron-binding protein. EMBO J. 16, 7342–7350 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaneko, T. et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3, 109–136 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Gray, J., Close, P. S., Briggs, S. P. & Johal, G. S. Anovel suppressor of cell death in plants encoded by the lls1 gene of maize. Cell 89, 25–31 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Adachi, J. & Hasegawa, M. Computer Science Monographs, No. 28. MOLPHY Version 2.3: Programs for Molecular Phylogenetics Based on Maximum Likelihood (Institute of Statistical Mathematics, Tokyo, (1996).

    Google Scholar 

  16. Kishono, H., Miyata, T. & Hasegawa, M. Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J. Mol. Evol. 30, 151–160 (1990).

    Article  ADS  Google Scholar 

  17. Morden, C. W. & Golden, S. S. PsbA genes indicate common ancestry of prochlorophytes and chloroplasts. Nature 337, 382–385 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Bhattacharya, D. & Medlin, L. The phylogeny of plastids: A review based on comparison of small-subunit ribosomal RNA coding regions. J. Phycol. 31, 489–498 (1995).

    Article  CAS  Google Scholar 

  19. Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985).

    Article  PubMed  Google Scholar 

  20. Green, B. R. & Pichersky, E. Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light-harvesting antenna proteins from two-helix and four-helix ancestors. Photosyn. Res. 39, 149–162 (1994).

    Article  CAS  Google Scholar 

  21. La Roche, J. et al. Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc. Natl Acad. Sci. USA 93, 15244–15248 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Hess, W. R. et al. Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proc. Natl Acad. Sci. USA 93, 11126–11130 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ausubel, F. M. et al. (eds) Current Protocols in Molecular Biology 2.4 (Wiley, New York, (1987).

    Google Scholar 

  24. Dolganov, N. A. M., Bhaya, D. & Grossman, A. R. Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: Evolution and regulation. Proc. Natl Acad. Sci. USA 92, 636–640 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tan, S., Cunningham, F. X. J & Grantt, E. LhcaR1 of the red alga Porphyridium cruentum encodes a polypeptide of the LHCI complex with seven potential chlorophyll a -binding residues that are conserved in most LHCs. Plant. Mol. Biol. 33, 157–167 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Iwabe for helpful discussions about phylogenetic analyses and comments on the manuscript; Y. Koshino for the use of unpublished sequences of Arabidopsis thaliana; A. Melis, M. Mimuro, and K. Shimizu for comments on the manuscript; R. Tanaka for technical assistance and comments on the manuscript; H. Fukuzawa for a Marchantia polymorpha cDNA; and T. Maruyama for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Tomitani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomitani, A., Okada, K., Miyashita, H. et al. Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400, 159–162 (1999). https://doi.org/10.1038/22101

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22101

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing