Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrolyte Imbalance as the Mechanism for Inert Gas Narcosis and Anaesthesia

Abstract

THE mechanism by which the volatile anaesthetics induce narcosis and anaesthesia remains the subject of speculation. Similarly, there has been much controversy concerning the mechanisms by which raised pressures of air or the chemically inert noble gases xenon, krypton, argon, neon and helium produce euphoria or loss of consciousness. Among the possibilities considered which could interfere with cerebral electrical activity have been a histotoxic hypoxia, depression of metabolism, membrane stabilization or block, interference with the sodium pump mechanism, increased production of inhibitor substance, interference with adenosine triphosphate production and the formation of clathrates1–6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, K. W., Paton, W. D. M., and Smith, E. B., Nature, 206, 574 (1965).

    Article  CAS  ADS  Google Scholar 

  2. Latner, A. L., Proc. Roy. Soc. Med., 58, 895 (1965).

    Article  CAS  Google Scholar 

  3. Pittinger, C. B., and Keasling, H. H., Anesthesiology, 20, 204 (1959).

    Article  CAS  Google Scholar 

  4. Butler, T. C., Pharmacol. Rev., 2, 121 (1950).

    Google Scholar 

  5. Featherstone, R. M., and Muehlbaecher, C., Pharmacol. Rev., 15, 97 (1963).

    CAS  Google Scholar 

  6. Bennett, P. B., The Aetiology of Compressed Air Intoxication and Inert Gas Narcosis (Pergamon Press, London, 1966).

    Book  Google Scholar 

  7. Paton, W. D. M., and Speden, R. N., Brit. Med. Bull., 21, 44 (1965).

    Article  CAS  Google Scholar 

  8. McIlwain, H. in Ciba Foundation Symposium jointly with Coordinating Committee for Symposia on Enzymes and Drug Action (edit. by Mongar. J. L., and Reuck, A. V. S. de), 170 (Churchill, London, 1962).

    Google Scholar 

  9. Mullins, L. J., Chem. Rev., 54, 289 (1954).

    Article  CAS  Google Scholar 

  10. Bangham, A. D., Standish, M. M., and Miller, N., Nature, 208, 1295 (1965).

    Article  CAS  ADS  Google Scholar 

  11. Clements, J. A., and Wilson, K. M., Proc. U.S. Nat. Acad. Sci., 48, 1008 (1962).

    Article  CAS  ADS  Google Scholar 

  12. Papahadjopoulos, A. D., Bennett, P. B., Bangham, A. D., and Miller, L. (in the press).

  13. Schales, O., and Schales, S. S., in Microanalysis in Medical Biochemistry (edit. by Wootton, I. D. P.), 67 (Churchill, London, 1964).

    Google Scholar 

  14. Bennett, P. B., Electroenceph. Clin. Neurophysiol., 17, 388 (1964).

    Article  CAS  Google Scholar 

  15. Citron, L., Exley, D., and Hallpike, C., Brit. Med. Bull., 12, 101 (1956).

    Article  CAS  Google Scholar 

  16. Bennett, P. B. thesis, Univ. Southampton (1963).

  17. Kaplan, S. A., and Stein, S. N., Amer. J. Physiol., 190, 166 (1957).

    Article  CAS  Google Scholar 

  18. Bennett, P. B., Life Sci., 1, 721 (1962).

    Article  CAS  Google Scholar 

  19. Wood, J. D., Stacey, N. E., and Watson, W. J., Canad. J. Physiol. and Pharmacol., 43, 405 (1965).

    Article  CAS  Google Scholar 

  20. Woodbury, D. M., Rec. Prog. Hormone Res., 10, 65 (1954).

    CAS  Google Scholar 

  21. Hoagland, H., Rec. Prog. Hormone Res., 10, 29 (1954).

    CAS  Google Scholar 

  22. Leiderman, P. H., and Katzman, R., Amer. J. Physiol., 175, 271 (1953).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BENNETT, P., HAYWARD, A. Electrolyte Imbalance as the Mechanism for Inert Gas Narcosis and Anaesthesia. Nature 213, 938–939 (1967). https://doi.org/10.1038/213938a0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/213938a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing