Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Collective and plastic vortex motion in superconductors at high flux densities

Abstract

The ‘mixed state’ of type II superconductors occurs when magnetic flux penetrates the material (in the form of vortices) without destroying the superconducting ground state. Zero resistivity is retained if the vortices are pinned by crystalline defects, but is destroyed by vortex motion. This provides the practical motivation for studying vortices in random pinning potentials1,2,3,4,5,6,7. But theinsights so obtained also bear on the more general class of problems involving the dynamics of elastic media in the presence of quenched disorder8 (for example, mechanical friction). Moreover, the magnetic vortex system is highly tunable and permits questions concerning frictional, plastic and elastic flow9 to be investigated on the scale of single vortices. Remarkable results have been obtained on the dynamics of this system10,11,12,13,14,15,16,17, but have been largely restricted to well separated vortices at very low flux densities. Scanning tunnelling microscopy has the potential to resolve individual vortices at much higher flux densities18,19,20,21, and here we show that the imaging rates can be sufficiently high toresolve the dynamics in this flux regime. We find that, in thepresence of strongly pinning line defects, the vortex lattice remains pinned until the number of vortices is about twice that ofthe defects, at which point plastic creep commences. But in thepresence of weak intrinsic point disorder, the vortices creep coherently along one of the principle axes of the vortex lattice, where they exhibit striking and unanticipated velocity modulations that appear to be related to the lattice periodicity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STM image (420 × 280?nm) at B = 0.6?T of plastic flow of the vortex lattice in NbSe2 containing columnar defects (CDs).
Figure 2: STM image (230 × 355?nm) of a moving vortex lattice in pristine NbSe2 at a field 0.6?T.

Similar content being viewed by others

References

  1. Blatter, G. et al. . Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Koshelev, A. E. & Vinokur, V. M. Dynamic melting of the vortex lattice. Phys. Rev. Lett. 73, 3580–3583 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Giamarchi, T. & LeDoussal, P. Moving glass phase of driven lattices. Phys. Rev. Lett. 76, 3408–3411 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Le Doussal, P. & Giamarchi, T. Moving glass theory of driven lattices with disorder. Phys. Rev. B 57, 11356–11403 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Moon, K., Scalettar, R. & Zimámny, G. T. Dynamical phases of driven vortex systems. Phys. Rev. Lett. 77, 2778–2781 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Scheidl, S. & Vinokur, V. M. Driven dynamics of periodic elastic media in disorder. Phys. Rev. B 57, 13800–13810 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Balents, L., Marchetti, M. C. & Radzikovsky, L. Nonequilibrium steady states of driven periodic media. Phys. Rev. B 57, 7705–7739 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Nattermann, T. Scaling approach to pinning; Charge-density waves and giant flux creep in superconductors. Phys. Rev. Lett. 64, 2454–2457 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Olsen, C. J., Reichhardt, C. & Nori, F. Nonequilibrium dynamics phase diagram for vortex lattices. Phys. Rev. Lett. 81, 3757–3760 (1998).

    Article  ADS  Google Scholar 

  10. Osakabe, N., Kasai, H., Kodama, T. & Tonomura, A. Time-resolved analysis in transmission electron microscopy and its application to the study of the dynamics of vortices. Phys. Rev. Lett. 78, 1711–1714 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Kirtley, J. R. et al. . Direct imaging of integer and half-integer Josephson vortices in high-T cgrain boundaries. Phys. Rev. Lett. 76, 1336–1339 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Oral, A. et al. . Direct observation of melting of the vortex solid in Bi2Sr2CaCu2O8+δsingle crystals. Phys. Rev. Lett. 80, 3610–3613 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Mozer, A. et al. . Observation of single vortices condensed into a vortex-glass phase by magnetic force microscopy. Phys. Rev. Lett. 74, 1847–1850 (1995).

    Article  ADS  Google Scholar 

  14. Bolle, C. A., de la Cruz, F., Gammel, P. L., Waszczak, J. V. & Bishop, D. J. Observation of tilt induced orientational order in the magnetic flux lattice 2H -NbSe2. Phys. Rev. Lett. 71, 4039–4042 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Yao, Z. et al. . Path of magnetic flux lines through high-T c copper oxide superconductors. Nature 371, 777–779 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Marchevsky, M. V., Aarts, J., Kes, P. H. & Indenbom, M. V. Observation of the correlated vortex flow in NbSe2. Phys. Rev. Lett. 78, 531–534 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Pardo, F. et al. . Real space images of the vortex lattice structure in a Type II superconductor during creep over a barrier. Phys. Rev. Lett. 79, 1369–1372 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Hess, H. F., Robinson, R. B. & Waszczak, J. V. Vortex-core structure observed with a scanning tunneling microscope. Phys. Rev. Lett. 64, 2711–2714 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Maggio-Aprile, I., Renner, Ch., Erb, A., Walker, E. & Fischer, & Oslash; . Direct vortex lattice imaging and tunneling spectroscopy of flux lines on Yba2Cu3O7−δ. Phys. Rev. Lett. 75, 2754–2757 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Renner, Ch., Revaz, B., Kadowaki, K., Maggio-Aprile, I. & Fischer, & Oslash;. Observation of the low temperature pseudogap in the vortex cores of Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 80, 3606–3609 (1998).

    Article  ADS  CAS  Google Scholar 

  21. De Wilde, Y. et al. . Scanning tunneling microscopy observation of a square Abrikosov lattice in LuNi2B2C. Phys. Rev. Lett. 78, 4273–4276 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Volodin, A. P., Golubov, A. A. & Aarts, J. Vortex core shapes measured by STM. Z. Phys. B 102, 317–321 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Volodin, A. P. & Troyanovski, A. M. Athree-phase piezoinertio motor for a low temperature STM. Instr. Exp. Techn. 40, 724–726 (1997).

    Google Scholar 

  24. Wengel, C. & Tauber, U. C. Weakly pinned Bose glass vs Mott insulator phase in superconductors. Phys. Rev. Lett. 78, 4845–4848 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Behler, S. et al. . Vortex pinning in ion-irradiated NbSe2 studied by scanning tunneling microscopy. Phys. Rv. Lett. 72, 1750–1753 (1994).

    Article  ADS  CAS  Google Scholar 

  26. van der Beek, C. J., Nieuwenhuys, G. J. & Kes, P. H. Nonlinear current diffusion in type-II superconductors. Physica C 197, 320–336 (1992).

    Article  ADS  Google Scholar 

  27. Larkin, A. I. & Ovchinnikov, Yu. N. Pinning in type II superconductors. J. Low Temp. Phys. 34, 409–427 (1979).

    Article  ADS  Google Scholar 

  28. Angurel, L. A., Amin, F., Polichetti, M., Aarts, J. & Kes, P. H. Dimensionality of collective pinning in 2H -NbSe2 single crystals. Phys. Rev. B 56, 3425–3432 (1997).

    Article  ADS  CAS  Google Scholar 

  29. Schmid, A. & Hauger, W. On the theory of vortex motion in an inhomogeneous superconducting film. J. Low Temp. Phys. 11, 667–685 (1973).

    Article  ADS  Google Scholar 

  30. Bauer, P. et al. . Depth sensitive visualisation of irradiation-induced columnar defects in 2H-NbSE2. Euro. Phys. Lett. 23, 585–591 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. P. Volodin for developing the first version of our STM, R. J. Drost for auxiliary experiments, M. Konczykowski for carrying out the heavy ion irradiation at GANIL (Caen, France), and M. V. Marchevsky, P. Le Doussal and T. Giamarchi for discussions. This project was partially supported by FOM and the Dutch-Russian Science Collaboration financed by NWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. H. Kes.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Troyanovski, A., Aarts, J. & Kes, P. Collective and plastic vortex motion in superconductors at high flux densities. Nature 399, 665–668 (1999). https://doi.org/10.1038/21385

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21385

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing