Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Assignment of circadian function for the Neurospora clock gene frequency

Abstract

Circadian clocks consist of three elements: entrainment pathways (inputs), the mechanism generating the rhythmicity (oscillator), and the output pathways that control the circadian rhythms. It is difficult to assign molecular clock components to any one of these elements. Experiments show that inputs can be circadianly regulated1,2,3 and outputs can feed back on the oscillator4,5. Mathematical simulations indicate that under- or overexpression of a gene product can result in arrhythmicity, whether the protein is part of the oscillator or substantially part of a rhythmically expressed input pathway6. To distinguish between these two possibilities, we used traditional circadian entrainment protocols7,8 on a genetic model system, Neurospora crassa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Circadian entrainment of frq + by 12 h temperature cycles (a, 16–32 °C; b, 22–27 °C; 6 h low (grey) and 6 h high (white) temperature in constant darkness).
Figure 2: Temperature cycles and circadian entrainment of frq mutants.
Figure 3: frq mRNA levels in temperature cycles (22–27 °C, shading as in Fig. 1) for frq + (filled circles) and frq 9 (open circles).
Figure 4: Light:dark cycles do not produce circadian entrainment.

Similar content being viewed by others

References

  1. Emery, P., So, WV., Kaneko, M., Hall, J. C. & Rosbash, M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95, 669–679 (1998).

    Article  CAS  Google Scholar 

  2. Roenneberg, T. & Deng, T.-S. Photobiology of the Gonyaulax circadian system: I Different phase response curves for red and blue light. Planta 202, 494–501 (1997).

    Article  CAS  Google Scholar 

  3. Roenneberg, T. & Foster, R. G. Twilight times—light and the circadian system. Photochem. Photobiol. 66, 549–561 (1997).

    Article  CAS  Google Scholar 

  4. Block, G., Geusz, M., Khalsa, S., Michel, S. & Whitmore, D. (eds). Cellular Analysis of a Molluscan Retinal Biological Clock 51–66 (Wiley, Chichester, (1995).

    Google Scholar 

  5. Mrosovsky, N., Salmon, P. A., Menaker, M. & Ralph, M. R. Nonphotic phase shifting in hamster clock mutants. J. Biol. Rhythms 7, 41–50 (1992).

    Article  CAS  Google Scholar 

  6. Roenneberg, T. & Merrow, M. Molecular circadian oscillators—an alternative hypothesis. J. Biol. Rhythms 13, 167–179 (1998).

    Article  CAS  Google Scholar 

  7. Aschoff, J. (ed.) Biological Rhythms(Plenum, New York, (1981).

    Book  Google Scholar 

  8. Aschoff, J. in Proc. XIII Int. Conf. Soc. Chronobiol. (Pavia 1977)(Halberg, F.et al., eds) 105–112 (Il Ponte, Milan, (1981).

    Google Scholar 

  9. Bruce, V. Environmental entrainment of circadian rhythms. Cold Spring Harbor Symp. Quant. Biol. 25, 29–48 (1960).

    Article  Google Scholar 

  10. Aronson, B. D., Johnson, K. A., Loros, J. J. & Dunlap, J. C. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science 263, 1578–1584 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Garceau, N. Y., Liu, Y., Loros, J. J. & Dunlap, J. Alternative initiation of translation and time specific phosphorylation yield multiple forms of essential clock protein FREQUENCY. Cell 89, 469–476 (1997).

    Article  CAS  Google Scholar 

  12. Crosthwaite, S. K., Loros, J. J. & Dunlap, J. C. Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell 81, 1003–1012 (1995).

    Article  CAS  Google Scholar 

  13. Loros, J. J. & Feldman, J. F. Loss of temperature compensation of circadian period length in the frq -9 mutant of Neurospora crassa. J. Biol. Rhythms 1, 187–198 (1986).

    Article  CAS  Google Scholar 

  14. Aronson, B. D., Johnson, K. A. & Dunlap, J. C. The circadian clock locus frequency : a single ORF defines period length and temperature compensation. Proc. Natl Acad. Sci. USA 91, 7683–7687 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Feldman, J. F. & Hoyle, M. N. Isolation of circadian clock mutants of Neurospora crassa. Genetics 75, 605–613 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Merrow, M. W. & Dunlap, J. C. Intergeneric complementation of a circadian rhythmicity defect: phylogenetic conservation of structure and function of the clock gene frequency. EMBO J. 13, 2257–2266 (1994).

    Article  CAS  Google Scholar 

  17. Somers, D. E., Webb, A. A., Pearson, M. & Kay, S. A. The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125, 485–494 (1998).

    CAS  PubMed  Google Scholar 

  18. Crosthwaite, S. K., Dunlap, J. C. & Loros, J. J. Neurospora wc-1 and wc-2 : Transcription, photoresponses, and the origin of circadian rhythmicity. Science 276, 763–769 (1997).

    Article  CAS  Google Scholar 

  19. Russo, V. E. Blue light induces circadian rhythms in the bd mutant of Neurospora : double mutants bd,wc-1 and bd,wc-2 are blind. J. Photochem. Photobiol. B 2, 59–65 (1988).

    Article  CAS  Google Scholar 

  20. Liu, Y., Merrow, M., Loros, J. L. & Dunlap, J. C. How temperature changes reset a circadian oscillator. Science 281, 825–829 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Merrow, M., Garceau, N. & Dunlap, J. Dissection of a circadian oscillation into discrete domains. Proc. Natl Acad. Sci. USA 94, 3877–3882 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Sargent, M. L., Briggs, W. R. & Woodward, D. O. Circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol. 41, 1343–1349 (1956).

    Article  Google Scholar 

  23. Winfree, A. T. Suppressing Drosophila circadian rhythm with dim light. Science 183, 970–972 (1974).

    Article  ADS  CAS  Google Scholar 

  24. Arpaia, G., Loros, J. J., Dunlap, J. C., Morelli, G. & Macino, G. The interplay of light and the circadian clock. Plant Physiol. 102, 1299–1305 (1993).

    Article  CAS  Google Scholar 

  25. Chang, B. & Nakashima, H. Effects of light-dark cycles on the circadian conidiation rhythm in Neurospora crassa. J. Plant Res. 110, 449–453 (1997).

    Article  Google Scholar 

  26. Dharmananda, S. Studies of the Circadian Clock of Neurospora crassa: Light-Induced Phase Shifting (University of California, Santa Cruz, (1980).

    Google Scholar 

  27. Lakin-Thomas, P. L. Choline depletion, frq mutations, and temperature compensation of the circadian rhythm in Neurospora crassa. J. Biol. Rhythms 13, 268–277 (1998).

    Article  CAS  Google Scholar 

  28. Thresher, R. J. et al. Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science 282, 1490–1494 (1998).

    Article  CAS  Google Scholar 

  29. Stanewsky, R. et al. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95, 681–692 (1998).

    Article  CAS  Google Scholar 

  30. Roenneberg, T. & Taylor, W. Automated Recordings of Bioluminescence—with special reference to the analysis of circadian rhythms. Methods Enzymol. 305(in the press).

Download references

Acknowledgements

This work is dedicated to the memory of J. Aschoff. We thank V. Schiewe, A. Kohnert and G. Meyer for excellent technical assistance; the members of the Woody Hastings lab for comments on the manuscript; and the DFG, the Meyer-Struckmann-Stiftung and the Münchner Medizinische Wochenschrift for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martha Merrow or Till Roenneberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merrow, M., Brunner, M. & Roenneberg, T. Assignment of circadian function for the Neurospora clock gene frequency. Nature 399, 584–586 (1999). https://doi.org/10.1038/21190

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21190

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing