742

factors must be involved since specific effects between the tris(ethylenediamine)cobalt(III) cation and the tris(2,2'bipyridine)osmium(II) and (III) cations have been reported⁴, where chelate hydrogen-bonding is not possible.

It appears probable that all these phenomena are but manifestations of configurational activity as originally proposed by Dwyer⁵. Therefore those optically inactive complexes for which activity effects have been observed should also display circular dichroism when in the presence of the optically active agent.

J. A. BROOMHEAD[†]

Department of Chemistry,

University of Queensland,

St. Lucia, Brisbane.

 $^{\rm +}$ Now at Department of Chemistry, School of General Studies, Australian National University, Canberra.

¹ Werner, A., Ber., 47, 2171 (1914).

² Broomhead, J. A., Dwyer, F. P., and Hogarth, J. W., *lnorg. Synth.*, 6, 186 (1960). ³ Mason, S. F., and Norman, B. J., Chem. Commun., No. 15, 335 (1965).

⁴ Barnes, G. T., Backhouse, J. R., Dwyer, F. P., and Gyarfas, E. C., J. Proc. Roy. Soc. New South Wales, 84, 151 (1956). ⁵ Dwyer, F. P., O'Dwyer, M. F., and Gyarfas, E. C., Nature, 167, 1036 (1951).

Relation between Thermodynamic Property Change and Vibrational Frequency Shift in Ethyl Halides

RELATIONS can be found by plotting the difference of the ideal gas state thermodynamic properties ΔS° and ΔC_{p}° ; formed between the thermodynamic property values of ethane, C_2H_6 , and its homologues, C_2H_5X (X = F, Cl, Br, I), against the corresponding C-X bond stretching and C-C-X bond bending frequencies in ethyl halide series (Fig. 1). The results are presented in Table 1. As the shifts in C-X bond stretching frequency with

change in substituent in ethyl halide series correlate nearly linearly with the respective thermodynamic property increments in entropy, ΔS° , and heat capacity, ΔC_p° , it seems plausible to believe that these stretching frequencies do not appreciably interact with other modes. The C-C-X bond bending frequencies although also yielding smooth curves (Fig. 1), however, have a greater degree of possible interaction.

Table 1

Compound	Thermodynamic property difference (at 298-16° K) (cal./g mole °K) $\Delta C_n^{\circ} \Delta S^{\circ}$					Vibrational frequency (cm ⁻¹) C-X stretch C-C-X bend	
Dillions (1 TT	0	1-10		0	(
Ethane C_2H_6	0	(ret.	1)	0	(ref. 1)		
Ethyl fluoride C ₂ H ₅ F	1.14	(ref.	2)	7.93	(ref. 2)	810 (ref. 4)	415 (ref. 4))
Ethyl chloride C ₂ H ₅ Cl	2.42	(ref.	3)	11.14	(ref. 3)	658 (ref. 5)	336 (ref. 6)
Ethyl bromide							
C_2H_5Br	2.83	(ref.	3)	13.65	(ref. 3)	560 (ref. 6)	292 (ref. 3)
Ethyl iodide C ₂ H ₅ I	2.88	(ref.	2)	15.80	(ref. 2)	497 (ref. 6)	262 (ref. 7)

I thank the National Research Council of Canada for financial assistance.

J. LIELMEZS

Department of Chemical Engineering,

University of British Columbia,

Vancouver.

¹ A.P.I. Res. Proj. 44, Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds (1953).
 ² Morgan, J. P., and Lielmezs, J., Indust. and Eng. Chem., Fund., 4, 383 (1965).

- (1965).
 ⁶ Green, J. H. S., and Holden, D. J., J. Chem. Soc., 1794 (1962).
 ⁴ Nielsen, J. R., Smith, D. C., Ferguson, E. E., and Saunders, R. A., J. Chem. Phys., 20, 847 (1952).
 ⁸ Daasch, L. N., Liang, C. Y., and Nielsen, J. R., J. Chem. Phys., 22, 1923 (1954).
- ⁶ McDewitt, N. T., A. S. D. Tech. Rep., 61-202 (U.S. Dept. of Commerce, Washington).

⁷ Pai, N. G., Ind. J. Phys., 7, 522 (1932).

BIOCHEMISTRY

Identification of the Yellow Lupin Growth Inhibitor as (+)-Abscisin II ((+)-Dormin)

THE presence of an abscission-accelerating substance in the pods of yellow lupin (Lupinus luteus var. Weiko II) was deduced by Van Steveninck¹. He was able to show that the whorls of fertilized pods at the base of the inflorescence induced the abscission of younger, distal pods. Plants infected with pea mosaic virus underwent a different pattern of abscission suggesting that the hormonal balance was disturbed². Paper chromatography of the acids extracted from lupin pods coupled with a wheat coleoptile extension assay revealed an inhibitory band which appeared to contain the factor controlling pod abscission³

A highly active and partly crystalline concentrate of the inhibitory material obtained from 700 kg of yellow lupin pods by Rothwell and Wain⁴ has now been examined by a spectropolarimetric method recently described⁵. The sample showed a positive Cotton effect with extrema at 287 and 245 mµ and a profile identical with that of (+)-abscisin II. The ultra-violet absorption spectrum in alkaline and acidic ethanol was consistent with that of abscisin II (ref. 6) together with a superimposed, weak absorption peak at 237 mµ which could be attributed to an impurity. Based on absorbance at 262 mµ the molar amplitude of the Cotton effect was $\sim 240,000^{\circ}$, which is in good agreement with that of (+)-abscisin II (ref. 5).

The inhibitory activity of the sample in the wheat embryo assay⁶ was slightly less than twice that of synthetic racemic abscisin II used for comparison. Since we have previously shown⁷ that (+)-abscisin II has about twice the inhibitory activity of the racemic compound, the spectropolarimetric assay is confirmed; the sample is largely (+)-abscisin II.

The identification of sycamore dormin as abscisin II extended the known range of this compound's physio-logical effects. Recently the dormancy inducing inhibitor in birch leaves⁸ and the germination inhibitor in rosehips⁹ have also been identified as (+)-abscisin II (ref. 5) so that the role of this compound in controlling dormancy is now well established. The identification of the lupin factor places its abscission-inducing role¹⁰ on a firmer basis,