

Fig. 1. Metaphase chromosomes of Haplopappus gracilis $(2 n=4)$ root tip cells ($\times 1,800$)
rigs. 2 and 3. Metaphase chromosomes in haploid root tip cells of Haplopappus gracilis ($\times 1,800$)
somes is required. The observed reduction in chromosome number was probably not induced by the pretreatment, since no other cases of somatic reduction were observed in several hundred root tips pretreated in a similar fashion.

The obsorvation of Lima-De-Faria ${ }^{5}$ seems to indicate that the presence of the haploid set of chromosomes is enough to produce woll-differontiated tissues in leaf primordia of Haplopappus gracilis. However, since only a fow 'haploid' cells were seen in one of many root tips examined, and no 'haploid' sectors observod, it would be premature to state that two chromosomes are sufficient to produce normal tissue in the root meristem.

Successful clonal isolation of Haplopappus gracilis cells grown in culture has been reported ${ }^{7}$. The isolation and study of haploid clones would be of great genetic interest. If diploidy could be induced in such haploid elones, a homozygous strain of cells would be available for investigation.

This work was aided by grants from the National Institutes of Health, United States Public Health Service,
the Saul Singer Foundation, and the Charles H. Silyer Fund.

> Ira H. Ames** J. Mitra

Levy Laboratories, Cytogenetics Division.
Beth Israel Medical Center, New York, and Department of Biology, New York University.

* National Science Foundation Predoctoral Fellow.
${ }^{1}$ Huskins, C. L., and Steinitz, L. M., J. Heredity, 39, 66 (1948).
${ }^{2}$ Huskins, C. L. J. Heredity, 39, 311 (1948).
${ }^{3}$ Mitra, J., Mapes, M. O., and Steward, F. C., Amer. J. Bot., 47, 357 (1960).
${ }^{4}$ Mitra, J., and Steward, F. C., Amer. J. Bot., 48, 358 (1961).
" Lima-De-Faria, A., and Jaworska, H., Hereditas, 52, 119 (1964).
${ }^{6}$ Mitra, J., The Nucleus (in the press).
${ }^{7}$ Blakely, L. M., and Steward, F. O., Amer. J. Bot., 51, 780 (1964).

MISCELLANEOUS

Presenting the Results

1n the recent article by Prof. Robert B. (irieves and Dibakar Bhattacharyya ${ }^{1}$, Fig. 2 shows a relation between two variables with the statement ". . . The residual DSS' concentrations are related in Fig. 2 to the ratio of DSS to trivalent iron in the feed. As x_{i} / z_{i} was increased, x_{r} remained relatively constant and then rose sharply above a feed ratio of approximately $1 \cdot 0 .{ }^{\prime \prime}$. In view of the close attention given to statistical aspects of data analysis in other parts of the article, the statement about the data of Fig. 2 appeared somewhat questionable. Accordingly, 1 read off the numbers from the graph as best I could with a piece of superimposed graph paper and replotted the data on $\log -\log$ co-ordinates. The data suggested a relation of the form $x_{r}=\sqrt{2 x_{i} / z_{i}}$, so I prepared a graph as shown in Fig. 1. Within the variability of the data, it does not appear to me that the data can be considered approximately constant below x_{i} / z_{i} of 1 , but rather that a regular increase is observed over the full range of the values. Certainly the variability of the data does not warrant a definite conclusion on the relationship.

The foregoing comments are submitted partly to makfthe point that the use of figures to prosent data and arguments makes it difficult for the reader to examine the data independently and test the conclusion offered bythe author. I realize that limitations of space make such tabular presentations difficult, but I am disturbed at the quantity of literature which is produced without tabulation of the supporting values in a form where related calculations can easily be made. As a result, there is often a tendency to accopt the author's statements because of the difficulty of examining the data separately.

James H. Wiegand
Aerojet-General Corporation,
Sacramento, California.
${ }^{1}$ Grieves, R. B., and Bhattacharyya, D., Nature, 207, 476 (1965).

