High-spin Five-coordinate Cobalt(II)

The tridentate ligand 1,3-bis(2^{\prime}-pyridyl)-2,3-diaza-1. propene, (paphy), when reacted with cobalt(II) chloride in ethanolic solution, yields several products. Two of these complexes are formulated as Co (paphy) Cl_{2} : one (designated α-) forms red plates and the other (β-) dark green needles. The β-isomer may readily be converted to the α-compound by heating in ethanolic medium.

The magnetic properties over a temperature range and the visible and near infra-red spectra have been suggested as a method of differentiating between octahedral and tetrahedral stereochemistries for $\mathrm{Co}(\mathrm{II})$ complexes. It is important to emphasize that this procedure allows a differentiation between these two stereochemistries, but may not finally establish either of them. The compounds discussed here may be used to elaborate this point.

The magnetic moment (5.04 B.M. at $293^{\circ} \mathrm{K}, \theta=13^{\circ}$) and diffuse reflectance spectrum [absorption at 7,900 $\left.\left({ }^{4} T_{2}\right) ; 17,300\left({ }^{4} A_{2}\right) ; 19,000,20,500 \mathrm{~cm}^{-1}\left({ }^{4} T_{1}\right)\right]$ of the α-isomer lead us to believe that it contains $\mathrm{Co}(\mathrm{II})$ in octahedral environment, probably with chloride bridging of adjacent octahedra to attain $\mathrm{CoN}_{3} \mathrm{Cl}_{3}$ co-ordination. It is isomorphous with the corresponding compound Ni (paphy) Cl_{2}. However, the co-ordination stereochemistry for $\beta-\mathrm{Co}$ (paphy) Cl_{2} is not clearly revealed by the spectral and magnetic data. The most intense absorptions in the reflectance spectrum occur at 4,500, 7,700 and $15,750 \mathrm{~cm}^{-1}$ and would most closely indicate strong field tetrahedral co-ordination (with parameters $D_{q}=450$ $\mathrm{cm}^{-1}, B^{\prime}=670 \mathrm{~cm}^{-1}$). But there are weaker bands at 12,200 and $20,000 \mathrm{~cm}^{-1}$ and the magnetic moment ($4 \cdot 84$ B.M. at $294^{\circ} \mathrm{K}$, falling to $4.56 \mathrm{~B} . \mathrm{M}$. at $80^{\circ} \mathrm{K}$) is about 0.25 B.M. greater than that predicted for these parameters. We have therefore determined the crystal structure of this compound.

The complex, $\beta-\mathrm{Co}$ (paphy) Cl_{2}, crystallizes in the monoclinic system with cell constants: $a=8.72 ; b=11.93$; $c=12 \cdot 64 \AA ; \beta=98^{\circ} 2^{\prime}$ and $Z=4$. From systematic absences, the space group was uniquely determined as $P 2_{1} / n$. Visual estimation of the intensity data collected by the Weissenberg multiple-film technique yielded 1,257 independent reflexions. The phase problem was solved by the 'heavy-atom' procedure using three-dimensional Patterson and Fourier syntheses. Isotropic leastsquares refinement of the atomic parameters led to a value for R of $0 \cdot 12$, while the subsequent inclusion of anisotropic temperature factors has reduced this index further, to 0.095 .

The storeochemistry of the molecule is illustrated in Fig. 1, from which the essentially square pyramidal geometry around the cobalt is apparent. The metal atom is $0.39 \AA$ above the basal plane which contains all other atoms except the chlorine atom $\mathrm{Cl}(2)$. The average $\mathrm{Co}-\mathrm{N}$ bond length is $2 \cdot 12 \AA$ and the angles $\mathrm{N}(1) \mathrm{CoN}(2)$ and $\mathrm{N}(3) \mathrm{CoN}(2)$ are both 74°. Angle $\mathrm{N}(2) \mathrm{CoCl}(1)$ is 157°;

Fig. 1
$\mathrm{N}(2) \mathrm{CoCl}(2)$ is 94°. There are no close inter-molecular interactions and the cobalt-cobalt vector is $4 \cdot 62 \AA$.
Two other $M L_{3} X_{2}$ complexes with this storeochemistry, $\mathrm{Ni}\left[\mathrm{CH}_{3} \mathrm{As}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{As}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2}\right] \mathrm{Br}_{2}$ (ref. 1) and $\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{P}\right)_{3}$ PdBr_{2} (ref. 2), have apical $M-X$ bonds considerably longer than the basal $M-X$ bonds, but in the present compound this difference is statistically just significant.
It is interesting to note that the ligand $2,2^{\prime}, 2^{\prime \prime}$-terpyridyl, (terpy), which presents a tridentate nitrogen donor sequence closely corresponding to that of paphy, also forms a crystalline complex Co (terpy) Cl_{2} (ref. 3). This is highspin with a near infra-red and visible reflectance spectrum similar to that of $\beta-\mathrm{Co}($ paphy $) \mathrm{Cl}_{2}$. A comparison of the unit coll parameters and about 80 X-ray intensities from crystals of Co (terpy) Cl_{2} and of Zn (terpy) Cl_{2}, in which there is trigonal bipyramidal stereochemistry ${ }^{4}$, indicates that these two compounds are isostructural. A full three-dimensional refinement of both these terpy structures is in progress ${ }^{5}$. Trigonal bipyramidal geometry for $\mathrm{Co}($ terpy $) \mathrm{Cl}_{2}$ would be in contrast to the square pyramidal geometry for $\beta-\mathrm{Co}$ (paphy) Cl_{2}, but we believe that intermolecular crystal forces are a major factor influencing the co-ordination stereochemistry in these two compounds.
It is important to emphasize that a differentiation between a trigonal bipyramidal and a tetragonal pyramidal arrangement in molecules of this type is very often difficult and a reassessment of the geometry of Zn (terpy) Cl_{2} implies a very close relationship with the paphy derivative reported here.
These complexos also provide further examples of highspin five-co-ordinate cobalt(II), in addition to the compounds $\left[\mathrm{Co}\left(\mathrm{Ph}_{2} \mathrm{MeAsO}_{4}\right)_{4} \mathrm{ClO}_{4}\right] \mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (ref. 6), bis (Nmethylsalicylaldimato) $\mathrm{Co}(\mathrm{II})$ (ref. 7) and $b i s(\mathrm{~N}-\beta$-di-ethylamineethyl-5-chlorosalicylaldimato) $\mathrm{Co}(\mathrm{II})$ (ref. 8).
I. G. Dance
M. Gerloch
J. Lewis
F. S. Stephens

University of Manchester.

F. Lions

University of Sydney.

${ }^{1}$ Mair, G. A., Powell, H. M., and Henn, D. E., Proc. Chem. Soc., 415 (1960).
${ }^{2}$ Collier, J. W., Mann, F. G., Watson, D. G., and Watson, II. R., J. Chem. Soc., 1803 (1964).
${ }^{3}$ Harris, C. M., and Lockyer, T. N. (unpublished results).
${ }^{4}$ Corbridge, D. E. C., and Cox, E. G., J. Chem. Soc., 594 (1956).
${ }_{6}^{5}$ Stephenson, N. C. (personal communication).
${ }^{6}$ Pauling, P., Robertson, G. B., and Rodley, G., Nature, 207, 73 (1965).
; Orioli, P. L., Di Vaira, M., and Sacconi, L., Chem. Comm., 103 (1965).
${ }^{*}$ Sacconi, L., Ciampolini, M., and Speroni, G. P., Inorg. Chem., 4, 1116 (1965).

Estimation of Nitrate by Nitration of 7-Hydroxy-4,8-dimethyl Coumarin

SkuJins ${ }^{1}$ proposed a colorimetric method of nitrate estimation using 7 -hydroxy-4-methyl coumarin (I) as the reagent for nitration. The 3,6 and 8 positions are activated for electrophilic substitution, but there is steric restriction to the entry of $\mathrm{NO}_{2}{ }^{+}$to the 3 position.

(1)

(II)

A mixture of products using Skujins's reagent and nitrate in a molar ratio of $4 \cdot 5: 1$, and following the analytical procedure to be outlined later, was extracted with chloroform, and the resultant nitro derivatives subjected to paper chromatography using n-butanol-ammonia-water ($8: 30: 62 \mathrm{v} / \mathrm{v}$) as developing solvent. Three spots were observed with R_{F} values in agreement with 6 -nitro,

