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Brightness-frequency relation. Scaled aerial results above 10 
Mc/s, satellite results below 10 Mc/s 
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have differing spectra. The separation will be discussed 
by us elsewhere. 

We are now making a new series of observations with 
scaled aerials of medium resolution. 

K. w. YATES 

R. WIELEBINSKI 

Cornell-Sydney University Astronomy Centre, 
School of Electrical Engineering, 
University of Sydney, Australia. 
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ASTROPHYSICS 

Pulsation Periods of General Relativistic 
Objects 

THE pulsation period of the lowest radial mode for a 
spherical homogeneous object in Newtonian theory is1 

(if r 1 = const): 
T = 2rr[4rrGp(r 1 - 4/3)]-1 l 2 

and if r 1 - 4/3 > 0, the period may vary over a wide 
range depending on tho density. 

However, a spherically symmetric homogeneous object 
in the post-Newtonian approximation has a period of2: 

/ [ (10 )]' -1/2 
T = 2rrc i 41tGe:(r 1 - 4/3) 1 - (GM/c 2R) 7 r 1 -1 I 
where e: is the total energy density. From this equation 
it is easily seen that there will be a minimum period oven 
if r 1 - 4/3 is always positive and finite. Substituting: 

e: = 3Mc2/4rrR3 

we obtain: 

-r= 2rr{GMR-3 (3I' 1 -4)[1-(GM/c2R)(~ r 1 - 1)]}-112 

A very massive star (superstar) has a r 1 which is a 
function of mass and is approximately 4/3. The 
quantity r 1 - 4/3 = o:(M/1110 )-112 (refs. 3 and 4). The 
minimum period will therefore occur at a radius of: 

and: 
Tmin 

or: 

R = 76 X GM/[63(r 1 - 4/3)c 2
] 

(304 x rrGM/63c3 ) (76/189) 112 (17, 

4·73 x l0-5 0:-2(M/M 0 ) 2 sec 

Tmin = 1·50 X 10-12 0:-2(.il-1/Mo)' yr 

4/3)-2 

A superstar of 106 2vl O would therefore have a poriod of 
(for a = 1·4) 0·77 yr. If quasi-stellar sources are very 
largo massive objects with fluctuations of tho order of 
years, then one would not expect thorn to be much larger 
than 106 Mo becauso of the quadratic mass dependence 
of the periods. W. A. Fowlor has recently pointed out 
that rotation may enable one to have smaller periods and 
therefore smaller radii 5 • 

This general relativistic effect of a minimum period also 
manifests itself in neutron stars• and white dwarfs, 
although in these cases the models are not homogeneous 
and r 1 is not constant. 

I thank A. D. Code for his advice . 
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Angular Momenta of Eclipsing Binaries 
and the Fission Theory of their Origin 

IN a new development of the fission theory of the origin 
of close binary stars1 •2 , I showed that rotational instability 
would occur during the pre-main sequence contraction of 
rotating stars with no internal magnetic field. The theory 
predicted the observed mass range for contact binaries of 
W-Ursae Majoris type with satisfactory accuracy, and 
also gave the observed variation of angular momentum 
with mass for these systems. I now wish to show that 
the theory also predicts the observed relation between 
angular momentum and mass for all the close binary 
systems. 

The rotational instability which gave rise to the forma
tion of binary systems was due to the different behaviour 
of convective and radiative regions of stars. When the 
star is fully convective, as it is during early stages of 
contraction", it rotates uniformly, and as the angular 
velocity increases the star spins of mass at the equator, 
and the effect of rotation is small over the bulk of the 
star. When the star begins to develop a radiative core, 
the rotation is no longer w1iform as each element of 
the radiative core contracts, conserving its angular 
momentum. The parameter that measures the effect of 
rotation is: 

0: = 
2rrGpc 

(l) 

where Q is the angular velocity and Pc the density at the 
centre of the star. When the star was fully convective, 
then with uniform rotation and centrifugal force balancing 
gravity at tho surface, o: = 0·04 (rof. 4). With the develop
ment of the radiative core o: varies like pc1 13 and so it will 
roach the critical value for instability, 0· 187 (ref. 5), when 
pc has increased by a factor 100. 

The increase in Pc is due to two effects : the changing 
degree in central condensation due to tho transition from 
convective energy transport, pc/P = 6, to radiative energy 
transport, Pc/p ~ 24 for massive stars and 54 for small 
stars, and the increase in the mean density p due to the 
decrease in radius. As the readjustment in internal 
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