MHz, the National Radio Astronomy Observatory (NRAO) 300-ft. telescope was used; at 2.7 GHz, 5 GHz and 14.5 GHz we used the NRAO 85-ft. telescope. The angular resolution of the telescopes is in each case high enough to allow a clear separation of the flux densities of both sources. The flux densities were measured relative to either Cassiopeia A, Taurus A or Virgo A, whichever was more convenient for a particular observation. Some earlier measurements at high frequencies1,2,4 and the interferometer measurement by Leslie and Elsmore³ were combined with our own measurements. All these observations also give a clear separation between NGC 1265 and NGC 1275. Our recently analysed high-frequency spectra of the strongest non-thermal radio sources⁵ were used to convert the relative flux density measurements into flux densities. The flux densities used for the spectra of NGC 1265 and NGC 1275 are given in Table 1.

Table 1, 🗄	FLUX	DENSITIES	(IN	FLUX	UNITS)	FOR	NGC	1275	AND	NGC	126
Frequen	icy (M	(Hz)	NO	7C 127	5		NG	7 126	5	I	Ref.

uency (MHZ)	NGC 1275	NGC 1205	Rei
178	$41.0 \pm 10\%$ (m.e.)	15.5±12% (m.e.)	3
750	$22.9 \pm 7.5\%$	$11.5 \pm 10\%$	
1,400	$13.0 \pm 12\%$	$6.3 \pm 15\%$	
2,700	$8.7 \pm 5\%$		
3,000	8·7 ± 5·3%	$3.7 \pm 11\%$	2
3,000	$8.9 \pm 5.8\%$		4
5,000	$10.7 \pm 10\%$	< 2.5	
8,000	$18.8 \pm 5\%$		1
14,500	$18.2 \pm 12\%$		
16.500	23.6 + 9%		1

The values are also shown in Fig. 1. The mean errors of the individual measurements are indicated by error bars. The spectrum of both sources steepens between 178 MHz and 3 GHz. But whereas the flux density of NGC 1265 is below our detection limit at 5 GHz, the spectrum of NGC 1275 shows the already mentioned increasing flux density above 3 GHz. This behaviour of the high-frequency part of the NGC 1275 spectrum has been discussed extensively by Dent and Haddock¹.

As NGC 1275 is classified as a Seyfert galaxy, we have looked at the other Seyfert galaxies at 5 GHz and 14.5 GHz. In all cases the results were negative. Our detection limit was 5 f.u. and 20 f.u., respectively.

National Radio Astronomy Observatory*, Green Bank, West Virginia.

* Operated by Associated Universities, Inc., under contract with the U.S. National Science Foundation.

- ¹ Dent, W. A., and Haddock, F. T. (preceding communication).
- ² Lynds, C. R., and Sobiesky, S., Publ. Nat. Rad. Astro. Obs., 1, 155 (1961). ³ Leslie, P. R. R., and Elsmore, B., Observatory, 81, 14 (1961).
- 4 Heeschen, D. S., and Meredith, B. L., Publ. NRAO, 1, 121 (1961).
- ⁵ Baars, J. W. M., Mezger, P. G., and Wendker, H. (in the press).

PHYSICS

The Linear Temperature Scale

THE Kelvin temperature scale used at present is linear, forming an ordered sequence of numbers:

$$+ 0^{\circ} \mathrm{K} \ldots 273 \cdot 16^{\circ} \mathrm{K} \ldots + \infty^{\circ} \mathrm{K}$$
(1)

for all normal thermodynamic states. If the so-called 'abnormal' thermodynamic states are admitted, the foregoing thermodynamic scale can be extended by adding a sequence of negative temperatures^{1,2}. Alternatively, if the following relation is introduced:

$$T = e^{\psi} \tag{2}$$

where $\psi = \int g(\theta) d\theta$ and depends on the thermal properties (0) of the system (refs. 3, 4, 5); T, absolute temperature (°K); it is possible to construct another temperature scale, the ψ -scale, or the logarithmic scale. Fig. 1 shows the relation between both these temperature scales.

Fig. 1. Relation between temperature scales

The logarithmic nature of the ψ -function assures that the zero value on the linear absolute scale (T-scale) will be reached asymptotically, that is, $T = 0^{\circ}$ K, when $\psi = -\infty$.

Comparing both these scales (the linear scale and its explicit^{4,5} functional form, the ψ -scale), the inaccessibility of the absolute zero^{6,7} follows generically, being not imaginable from the linear T-scale alone.

This work was supported by the National Research Council of Canada.

> W. D. GROVES J. LIELMEZS

Department of Chemical Engineering,

University of British Columbia, Vancouver 8, Canada.

- ¹ Ramsey, N. F., Phys. Rev., 103, 20 (1956).
 ² Landsberg, P. T., Phys. Rev., 115, 518 (1959).
 ³ Caratheodory, C., Math. Annalen, 67, 355 (1909).
 ⁴ Born, M., Phys. Z., 22, 218 (1921).
- ⁵ Chandrasekhar, S., Introduction to the Study of Stellar Structures (Dover Publications, 1957).

⁶ Haase, R., Z. Physik. Chem., Neue Folge, 9, 355 (1956).

⁷ Haase, R., Z. Physik. Chem., Neue Folge, 12, 1 (1957).

METEOROLOGY

An Experimental Determination of the Atmospheric Temperature Profile by Indirect Means

An article by Kaplan¹ suggested a method of obtaining indirectly the temperature profile of the atmosphere by measuring from a satellite the radiances at several wavelengths in the $15-\mu$ band of carbon dioxide. To test the practical application of this proposal the U.S. Weather Bureau has developed a grating spectrometer² with fixed exit slits and detectors to measure simultaneously the