

Fig. 3. Ratio of secondary to primary products against time. A, CF_2Cl_2 photolysis; \Box , $C_2F_4Cl_2$ photolysis

amounts must be added before any effect is perceptible, and these amounts are more than three times the concentration of 1,2-dichlorotetrafluoro ethane usually observed in the mercury photosensitized decomposition of CF_2Cl_2 . In Fig. 2B, it is shown that the ratio of 1,3-dichlorohexafluoro propane to 1,2-dichlorotetrafluoro ethane actually decreases when extra amounts of 1,2-dichlorotetrafluoro ethane are added.

Finally, in Fig. 3, the ratios $[C_3F_6Cl_2]/[C_2F_4Cl_2]$ and $[C_6F_{12}Cl_2]/[C_4F_6Cl_2]$ are plotted against irradiation time, and it can be seen that the induction period, clearly visible for $C_6F_{12}Cl_2$ formation, is absent for $C_3F_6Cl_2$ formation.

It therefore appears probable that 1,3-dichlorohexafluoro propane, formed in the mercury photosensitized decomposition of CF_2Cl_2 , arises by the interaction of primary radicals and does not involve a second excited mercury atom colliding with initially formed products. This does not rule out the possibility that CF_2 is formed in a single step:

$$\mathrm{Hg}^{*} + \mathrm{CF}_{2}\mathrm{Cl}_{2} \rightarrow \mathrm{CF}_{2} + \mathrm{HgCl}_{2}$$

but this appears unlikely in view of the appearance of 1,3-dichlorohexafluoro propane in the photolysis products of 1,3-dichlorotetrafluoro acetone, where such a process cannot occur. Further, the ratio $[C_3F_6Cl_2]/[C_2F_4Cl_2]$ has the same value (0.04) in both systems.

J. R. MAJER

D. Phillips

Department of Chemistry,

University of Birmingham.

¹ Bowles, R., Derbyshire, H., Majer, J. R., and Robb, J. C., *Nature*, **185**, 683 (1960).

² Bowles, R., Majer, J. R., and Robb, J. C., *Trans. Faraday Soc.*, 58, 1541 (1962).
³ Gunning, H. E. (private communication).

⁴ Mastrangelo, S. V. R., J. Amer. Chem. Soc., 84, 1122 (1962).

Reaction of Tetrafluoroethylene with Pentacyanocobaltate lons and with Reduced Vitamin B₁₂

We have previously shown¹ that a cobalt-carbon bond can be formed in aqueous solution by the interaction of acetylene with the pentacyanocobaltate(II) anion, while recently² benzyl and alkyl halides have been similarly shown to give a Co-C bond.

We have found that tetrafluoroethylene is readily absorbed at atmospheric pressure by aqueous solutions of the hydridopentacyano-cobaltate(III) ion, $[HCo(CN)_s]^{3-}$, as well as by the pentacyano-cobalt(II) ion. The well-crystallized salts analyse correctly for $K_3[(CN)_5CoCF_2CF_2H]$ (A) [for example, Found: C, 20.8; N, 17.4; F, 18.0; Co, 14.2; K, 29.1. Required: C, 20.6; N, 17.2; F, 18.7; Co, 14.5; K, 28.8 per cent] and $K_6[(CN)_6Co(CF_2)_2Co(CN)_5]$. 2H₂O (B); the salts are stable in air and thermally up to about 300° C.

The nuclear magnetic resonance spectra support these formulations. Thus the H^1 spectrum for (A) is a triple triplet while the fluorine-19 resonance of the β -CF₂ is split into a doublet by the proton and further into a triplet by the α -CF₂ group; all these lines are sharp and well resolved. In contrast the α -CF₂ resonance is a broad single line; the broadening is presumably due to incomplete averaging of the spin coupling with the cobalt-59 nucleus produced by quadrupole relaxation of this nucleus. For the same reason, the fluorine-19 spectrum of (B) is only a broad single line.

The interaction of C_2F_4 with the hydrido-species is interesting in that it can provide a probe for the detection of transition metal to hydrogen bonds in aqueous media where detection by the high-field proton resonance line is difficult. Thus we have failed to observe such a high-field line in saturated aqueous solutions of the grey-green reduction product of cyanocobalamin. A search was made at 40 Me/s several years ago3, at the time of our first investigations of the hydridic nature of lower oxidation states, and, more recently, at 56.45 Mc/s. However, the reduced species immediately absorbs tetrafluoroethylene, and the resulting red product-dissolved in chloroform-phenol, in which it is much more soluble than in water-shows a ¹⁹F resonance spectrum in which there is a doublet of splitting similar to that observed for the -CF₂H group of (A). While this suggests that reduced cyanocobalamin (B_{12s}) is a hydrido-species, we cannot rigorously exclude the possibility that it is a cobalt(I) species as recently suggested⁴, since such a cobalt(I) species could react with C_2F_4 with subsequent hydrogen transfer from the solvent.

M. J. MAYS

G. WILKINSON

Inorganic Chemistry Research Laboratories, Imperial College of Science and Technology,

London, S.W.7.

¹ Griffith, W. P., and Wilkinson, G., J. Chem. Soc., 1629 (1959).

² Halpern, J., and Maher, J. P., J. Amer. Chem. Soc., 86, 2311 (1964).

³ Griffith, W. P., Pratt, L., and Wilkinson, G., Nature, 182, 466 (1958); we thank Dr. E. Lester Smith of the Glaxo Laboratories for a gift of the cyanocobalamin used at that time.

⁴ Collat, J. W., and Abbot, J. C., J. Amer. Chem. Soc., 86, 2308 (1964).

Molecular Structure of Phosphobenzene

THE following polyphosphines of formula $(C_6H_5P)_n$ have been reported in the literature: (A) m.p. $149^{\circ}-150^{\circ}$ (refs. 1-9); (B) m.p. 190° (refs. 2 and 3); (C) m.p. $252^{\circ}-256^{\circ}$ (ref. 3); (D) m.p. $260^{\circ}-285^{\circ}$ (ref. 8). Compounds C and D are insoluble in organic solvents and have, presumably, a polymeric structure. The molecular weights of A and B in solution have not been established definitely. Several isopiestic, ebullioscopic and cryoscopic methods have been used by various workers and the following identities have been proposed. $A = B = I^2$; A = I, $B = II^3$; $A = B = II^8$; $A = II^{4,5,9}$. Recently it has also

$$\begin{array}{cccc} C_6H_5 & & C_6H_5 & & P - P - C_6H_5 \\ I & & & I \\ I & & I \\ I & & II \end{array}$$

been shown^{θ} that compounds A and B are tetraphenylcyclo-tetraphosphines (II) which differ in both the dissolved and solid states and are stereoconformers.

We have prepared compound A by the reaction of phenylphosphonous dichloride and phenyl phosphine^{1,3-5} (equation 1):

$$nC_{6}H_{5}PCl_{2} + nC_{6}H_{5}PH_{2} \rightarrow (C_{6}H_{5}P)n + 2nHCl$$
(1)

and by a new method which involves the heating of phenylphosphine and a stoichiometric amount of phenyl-

(