One hydrogen atom attached to the amino nitrogen is in the plane of the ring, and the N-H bond points towards the carbonyl oxygen (O_{2}) of the next molecule along the c axis. In contrast, the other hydrogen atom of the amino-group is situated in a position such that the $\mathrm{N}-\mathrm{H}$ bond makes an angle of about 30° with the plane of the molecule. However, this $\mathrm{N}-\mathrm{H}$ bond points to within a few degrees of the ring nitrogen (N_{3}) $3.04 \AA$ away in a neighbouring molecule. Thus the proton is in a normal position for forming a hydrogen bond between the two nitrogen atoms. Although the amino-group is not in a planar trigonal configuration. the bond length $\mathrm{C}_{4}-\mathrm{N}_{4}$ is none the less shortened to $1.35 \AA$ $\pm 0.005 \AA$, as had been predicted for cytosine in tho nucleic acids ${ }^{11}$ and found in N_{1}-mothyl cytosine hydrobromide ${ }^{12}$.

The molecules are closely packod in this crystal, and there are van der Waals contacts between methyl groups which can be sean in Fig. 2. It is quite likely that this arrangement arises from optimizing the stabilizing energy obtained from the packing of molecules even if it does not minimizo tho energy associated with the configuration of the amino-group.

This work was supported by grants from the U.S. National Instituter of Health and the National Science Foundation.

F. Scott Mathews* Alexander Rich

Department of Biology,
Massachusetts Institute of Tochnology, Cambridge, Mass.

Postdoctoral Follow of the U.S. National Institutes of Healti, Present address: Medical Research Council Laboratory of Molecular Biology, Cambridge, England.
${ }^{1}$ Green, D. W., Mathews, F. S., snd Rlch, A., J. Biol. Chem., 287, 357: (1962).

Hoogsteen, K., Acta Cryst., 16, 28 (1063).
: Parry, G. S., Aeta Cryst., 7, 313 (1964).
${ }^{4}$ Marsh, R. E., Blerstedt, R., and Eichhorn, E. L., Acta Oryst., 15, 310 (1962).
${ }^{\text {b }}$ Cochran, W., Acta Cryst., 4, 81 (1951).
${ }^{4}$ Iball, J., and Wilson, F. R., Nature, 198, 1193 (1963).
${ }^{7}$ Hoogsteen, K., Acta Cryst., 12, 822 (1959).
${ }^{8}$ Mathews, F. S., and Rich, A., J. Mol. Biol. (in the press)
${ }^{\text {T}}$ Sobell, H. M., Tomita, K., and Rich, A.,.Proc. U.S. Nat. Acad. Sci., 49. 885 (1963).
${ }^{10}$ O'Brien, F. J., J. Mol. Biol., 7, 107 (1963).
${ }^{11}$ Pauling, L., and Corey, R. B., Arch. Biochem. Biophys., 65, 164 (1956).
${ }^{12}$ Bryan, R. F., and Tomita, K., Acta Cryst., 15, 1174 (1962).

Unit Cell and Space Group of Seleno-urea

A preliminary X-ray investigation of the crystal structure of seleno-urea has boon made. The crystals are hexagonal white needles, elongated along the c axis. The values found for the unit cell dimensions are: $a=15 \cdot 34 \pm$ $0.02 \AA ; c=12.99 \pm 0.02 \AA$. The number of molecules per unit cell is $N=27$; calculated value $27 \cdot 08$, for a density of $2.1 \mathrm{~g} / \mathrm{c} . \mathrm{c}$.

The lattice constants were dotermined from Weissenberg photographs, on which the diffraction pattern of a copper wire was superimposed for calibration. While the reflexions give an apparent $D_{y^{d}}$ symmetry, careful examination of the intensitios showed the symmetry to bo consistent with the space group $C_{3}^{2}-P_{3_{2}}$.

M. Perez Rodrigurz
 M. Cubero
 A. Lopez-Castro

Division de Cioncias del C.S.I.C.,
Department of Physics,
University of Seville, Spain.

CHEMISTRY

Chemiluminescence from Dissolved Oxygen

IReb chemiluminoscence corresponding to about 40 kea mol., and attributable to the forbidden transition ${ }^{1} \Sigma_{g}^{+}-{ }^{3} \Sigma_{g}^{-}$of the oxygen moloculo, has boen observed in thres recont investigations ${ }^{1-3}$, but no explanation of the offect has been presented. These involve organic hydroperoxides or oxidations with hydrogen peroxide and also the reaction of hydrogen peroxide with HClO. In contrast with this, decompositions of hydrogen peroxide catalysed by copper ions or by platinum show no trace of the offect. and in the photochemical decomposition of ozone ground state oxygen molecules are formed with vibrationtbl energies up to $70 \mathrm{kcal} / \mathrm{mol}$. (ref. 4). The state of newly formed oxygen molecules is evidently not determined solely by enorgy factors. Since in the thermal decomposition of an organic peroxide to a ketone (or quinone;

about $70 \mathrm{kcal} / \mathrm{mol}$. is liberated it is very possible that the. ketono (K) is formed in its triplet state. The spin-allowed reaction ${ }^{3} K+{ }^{3} \mathrm{O}_{2} \rightarrow{ }^{1} K+{ }^{1} \mathrm{O}_{2}$ would then account for the formation of singlet excited oxygen molecule.
E. T. Bowes

Physical Chomistry Laboratory, Oxford.

${ }^{1}$ Khan, A. u., and Kasha, M., J. Chem. Phys., 39, 2105 (1963).
${ }^{2}$ Bowen, E. J., and Lloyd, R. A., Proc. Roy. Soc., A, 275, 465 (1963).
${ }^{*}$ Bowen, E. J., and Lloyd, R. A., Proc. Chem. Soc., 305 (1963).
${ }^{4}$ McGrath, W. D., and Norrish, R. G. W., Proc. Roy. Soc., A. 254, 317 (108u1.

A Lithium-Scandium-Molybdenum(IV) Oxide

The structure of compounds $A_{2} \mathrm{IIMO}_{3} \mathrm{IVO}_{8}$, where $A^{\text {HI }}$ may be $\mathrm{Mg}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Zn}$, and Cd , has been reported ${ }^{1}$. In this structure the divalent cations occupy both tetrahedral and octahodral holes. The arrangerment leads to fairly large deviations from Pauling's electrostatic valence rule. Sums of strengths of the electrostatic bonds to oxygens range from as low as $1 \frac{2}{3}$ to as high as $2 \frac{1}{2}$, though the high figure applies to only two of the sixteen oxygens in the unit cell.
The two different kinds of sites for the divalent ions suggest the possibility of testing for site preference on the basis of cation charge and/or size. The charge distribution could be changed by using a monovalent ion and a trivalent ion rather than two divalent ions. If the tetrahedral holes were occupied by the monovalent ions and the octahedral holes by the trivalent ions, the charge distribution would be improved: the oloctrostatic bond strength sums would thon range from a low of $1 \frac{5}{8}$ to a high of 21 (If the monovalent ion were the smaller ion, the relativi sizes should also favour the occupancy of tho tetrahedral sites by the monovalent ions and the octahedral sites by the trivalent ions.)

Although several combinations of mono- and tri-valent ions were tried unsuccossfully, a product was obtained with the reagents $\mathrm{Li}_{2} \mathrm{O}, \mathrm{Sc}_{2} \mathrm{O}_{3}$, and MoO_{2} in the mole ratios of $1: 1: 6$. The $\sin ^{2} \theta$ values for the low-angle powder diffraction lines of the compound are listed in Table 1. Interostingly, the lines of this pattern can almost. be indexed on the basis of a simple cubic cell with $a=4.9 \AA$. However, the cubic 211 line is rather abruptly missing. and a line corresponding to the forbidden value 7 for $h^{2}+k^{2}+l^{2}(=N)$ is present. Doubling the values of $h^{2}+k^{2}+l^{2}$ in order to avoid the number 7 , by using a

