Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Energy traps in atomic nuclei

Abstract

A small proportion of atomic nuclei can form highly excited metastable states, or isomers. Of particular interest is a class of isomers found in deformed axially symmetric nuclei; these isomers are among the longest-lived and have the potential to reach the highest energies. By probing their properties, insights into nuclear structure have been gained. The possibility of stimulated isomer decay may ultimately lead to new forms of energy storage and γ-ray lasers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Excitation energy as a function of various nuclear variables.
Figure 2: Chart of atomic nucleic, as a function of neutron number (N ) and proton number (Z ).
Figure 3: Some of the possible results of a beam (projectile) nucleus colliding with a target nucleus.
Figure 4: Illustration of the nuclear velocity fields for a deformed, rotating nucleus.
Figure 5: Reduced hindrance as a function of isomer excitation energy, relative to a rotor with the same angular momentum, for selected K -f.
Figure 6: Excitation energy of even-mass hafnium isomers relative to a rotor as a function of neutron number.

Similar content being viewed by others

References

  1. Hansen, P. G., Jensen, A. S. & Jonson, B. Nuclear halos. Annu. Rev. Nucl. Part. Sci. 45, 591–634 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Nolan, P. J. & Twin, P. J. Superdeformed shapes at high angular momentum. Annu. Rev. Nucl. Part. Sci. 38, 533–562 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Hofmann, S. New elements—approaching Z = 114. Rep. Prog. Phys. 61, 639–689 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Audi, G., Bersillon, O., Blachot, J. & Wapstra, A. H. The Nubase evaluation of nuclear and decay properties. Nucl. Phys. A 624, 1–124 (1997).

    Article  ADS  Google Scholar 

  5. Meitner, L. & Frisch, O. R. Disintegration of uranium by neutrons: a new type of nuclear reaction. Nature 143, 239–240 (1939).

    Article  ADS  CAS  Google Scholar 

  6. Britt, H. C. Properties of fission isomers. At. Data Nucl. Data Tables 12, 407–417 (1973).

    Article  ADS  CAS  Google Scholar 

  7. de Voigt, M. J. A., Dudek, J. & Szymanski, Z. High-spin phenomena in atomic nuclei. Rev. Mod. Phys. 55, 949–1046 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Byrne, A. P. et al . 34 µs isomer at high spin in 212Fr: evidence for a many-particle octupole coupled state. Phys. Rev. C 42, R6–R9 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Lobner, K. E. G. Systematics of absolute transition probabilities of K-forbidden gamma-ray transitions. Phys. Lett. B 26, 369–370 (1968).

    Article  ADS  Google Scholar 

  10. Wheldon, C. et al . Opening up the A ≈ 180 K-isomer landscape: inelastic excitation of new multi-quasiparticle yrast traps. Phys. Lett. B 425, 239–245 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Kondev, F. G. et al . Configuration changes and hindered decays in four- and six-quasiparticle isomers in 178Ta. Phys. Rev. C 54, R459–R463 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Gjorup, N. L. et al . Seven and nine quasi-particle K-isomers in 175Hf. Zeit. Phys. A 337, 353–354 (1990).

    ADS  Google Scholar 

  13. Proceedings of the International Workshop on Physics with Radioactive Beams. (eds Sinha, B., Shyam, R. & Thompson, I. J.) J. Phys. G 24, 1309–1656 (1998).

  14. Khoo, T. L. & Lovhoiden, G. Structural changes in the yrast states of 178Hf. Phys. Lett. B 67, 271–274 (1977).

    Article  ADS  Google Scholar 

  15. Boos, N. et al . Nuclear properties of the exotic high-spin isomer 178Hf m 2from collinear laser spectroscopy. Phys. Rev. Lett. 72, 2689–2692 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Deylitz, S. et al . Inelastic deuteron scattering from the high-spin isomer 178Hf m 2(16+). Phys. Rev. C 53, 1266–1272 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Aberg, S. An investigation of yrast traps in some prolate Hf isotopes. Nucl. Phys. A 306, 89–100 (1978).

    Article  ADS  Google Scholar 

  18. Jain, K., Walker, P. M. & Rowley, N. Residual interactions in multi-quasiparticle states. Phys. Lett. B 322, 27–32 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Dracoulis, G. D. Trends in nuclear structure with heavy ions. Nucl. Instrum. Methods Phys. Res. A 382, 1–19 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Mullins, S. M. et al . Rotational band on the 31 yr 16+ isomer in 178Hf. Phys. Lett. B 393, 279–284 (1997).

    Article  ADS  CAS  Google Scholar 

  21. D'Alarcao, R. et al . High-K isomers in neutron-rich hafnium nuclei at and beyond the stability line. Phys. Rev. C 59, R1227–R1231 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Cocks, J. F. C. et al . Observation of octupole structures in radon and radium isotopes and their contrasting behavior at high spin. Phys. Rev. Lett. 78, 2920–2923 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Dasso, C. H., Pollarolo, G. & Winther, A. Systematics of isotope production with radioactive beams. Phys. Rev. Lett. 73, 1907–1910 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Grzywacz, R. et al . Identification of µs-isomers produced in the quasifragmentation of a 112Sn beam Phys. Lett. B 355, 439–446 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Pfutzner, M. et al . New isotopes and isomers produced by the fragmentation of 238U at 1000 MeV/nucleon. Phys. Lett. B 444, 32–37 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Bohr, A. & Mottelson, B. R. Rotational states in even-even nuclei. Phys. Rev. 90, 717–719 (1953).

    Article  ADS  CAS  Google Scholar 

  27. Burson, S. B., Blair, K. W., Keller, H. B. & Wexler, S. The radiations from hafnium. Phys. Rev. 83, 62–68 (1951).

    Article  ADS  CAS  Google Scholar 

  28. Bohr, A. & Mottelson, B. R. Nuclear StructureVol. II (Benjamin, New York, (1975).

    MATH  Google Scholar 

  29. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  30. Belyaev, S. T. Effect of pairing correlations on nuclear properties. Mat. Fys. Medd. Dan. Vid. Selsk. 31(11), 1–55 (1959).

    MathSciNet  MATH  Google Scholar 

  31. Shimizu, Y. R., Garrett, J. D., Broglia, R. A., Gallardo, M. & Vigezzi, E. Pairing fluctuations in rapidly rotating nuclei. Rev. Mod. Phys. 61, 131–168 (1989).

    Article  ADS  CAS  Google Scholar 

  32. Purry, C. S. et al . Rotation of an eight-quasiparticle isomer. Phys. Rev. Lett. 75, 406–409 (1995).

    Article  ADS  CAS  Google Scholar 

  33. Dracoulis, G. D., Kondev, F. G. & Walker, P. M. Pairing reduction and rotational motion in multi-quasiparticle states. Phys. Lett. B 419, 7–13 (1998).

    Article  ADS  CAS  Google Scholar 

  34. Burglin, O. & Rowley, N. Exact pairing calculations in a large Nilsson-model basis: comparison with BCS and Lipkin-Nogami methods. Nucl. Phys. A 602, 21–40 (1996).

    Article  ADS  Google Scholar 

  35. Pashkevich, V. V. & Frauendorf, S. Effect of the shell structure on the moment of inertia; behavior of the averaged moment of inertia. Sov. J. Nucl. Phys. 20, 588–592 (1975).

    Google Scholar 

  36. Frauendorf, S. in Proc. Workshop on Gammasphere Physics 272–283 (World Scientific, Singapore, (1995).

    Google Scholar 

  37. von Weizsacker, C. F. Metastable Zustande der Atomkerne. Naturwissenschaften 24, 813–814 (1936).

    Article  ADS  CAS  Google Scholar 

  38. Blatt, J. M. & Weisskpof, V. F. Theoretical Nuclear Physics(Wiley & Sons, New York, (1952).

    Google Scholar 

  39. Bernthal, F. et al . Connection between backbending and high-spin isomers decay in 179W. Phys. Lett. B 74, 211–214 (1978).

    Article  ADS  Google Scholar 

  40. Pedersen, J., Bjornholm, S., Borggreen, J., Kownacki, J. & Sletten, G. Intrinsic excitations as yrast structures in 179W at I 35/2 . Physica Scripta T 5, 162–164 (1983).

    Article  ADS  Google Scholar 

  41. Chowdhury, P. et al . Decay of high-spin isomers in Os nuclei by barrier penetration. Nucl. Phys. A 485, 136–160 (1988).

    Article  ADS  Google Scholar 

  42. Walker, P. M. et al . High-K barrier penetration in 174Hf: a challenge to K selection. Phys. Rev. Lett. 65, 416–419 (1990).

    Article  ADS  CAS  Google Scholar 

  43. Walker, P. M. et al . Resolution of the 179W isomer anomaly: exposure of a Fermi-aligned s band. Phys. Rev. Lett. 67, 433–436 (1991).

    Article  ADS  CAS  Google Scholar 

  44. Crowell, B. et al . Novel decay modes of high-K isomers: tunneling in a triaxial landscape. Phys. Rev. Lett. 72, 1164–1167 (1994).

    Article  ADS  CAS  Google Scholar 

  45. Walker, P. M. et al . K-forbidden transitions from multi-quasiparticle states. Phys. Lett. B 408, 42–46 (1997).

    Article  ADS  CAS  Google Scholar 

  46. Bengtsson, T. et al . Competition between pairing-assisted tunneling and single-particle alignment in the decay of high-K isomeric states. Phys. Rev. Lett. 62, 2448–2451 (1989).

    Article  ADS  CAS  Google Scholar 

  47. Narimatsu, K., Shimizu, R. & Shizuma, T. γ-tunneling calculations for the decays of the K isomers in the Hf, W, Os region. Nucl. Phys. A 601, 69–88 (1996).

    Article  ADS  Google Scholar 

  48. Walker, P. M. et al . Multi-quasiparticle and rotational structures in 179W: Fermi alignment, the K-selection rule and blocking. Nucl. Phys. A 568, 397–444 (1994).

    Article  ADS  CAS  Google Scholar 

  49. Jain, K. et al . Multi-quasiparticle states in the mass-180 region. Nucl. Phys. A 591, 61–84 (1995).

    Article  ADS  Google Scholar 

  50. Xu, F. R., Walker, P. M., Sheikh, J. A. & Wyss, R. Multi-quasiparticle potential-energy surfaces. Phys. Lett. B 435, 257–263 (1998).

    Article  ADS  CAS  Google Scholar 

  51. Matinyan, S. Lasers as a bridge between atomic and nuclear physics. Phys. Rep. 298, 199–249 (1998).

    Article  ADS  CAS  Google Scholar 

  52. Baldwin, G. C. & Solem, J. C. Recoilless gamma-ray lasers. Rev. Mod. Phys. 69, 1085–1117 (1997).

    Article  ADS  CAS  Google Scholar 

  53. Utter, S. B. et al . Reexamination of the optical gamma ray decay in 229Th. Phys. Rev. Lett. 82, 505–508 (1999).

    Article  ADS  CAS  Google Scholar 

  54. Shaw, R. W., Young, J. P., Cooper, S. P. & Webb, O. F. Spontaneous ultraviolet emission from 233Uranium/229Thorium samples. Phys. Rev. Lett. 82, 1109–1111 (1999).

    Article  ADS  CAS  Google Scholar 

  55. Collins, C. B. et al . Accelerated emission of gamma rays from the 31-year isomer of 178Hf induced by x-ray irradiation. Phys. Rev. Lett. 82, 695–698 (1999).

    Article  ADS  CAS  Google Scholar 

  56. Rowe, D. J. Nuclear Collective Motion: Models and Theory(Methuen, London, (1970).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, P., Dracoulis, G. Energy traps in atomic nuclei. Nature 399, 35–40 (1999). https://doi.org/10.1038/19911

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/19911

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing