Table 1. NEUTRON CAPTURE IN THE ISOTOPES OF SAMARIUM

Samarium isotopes at 30 (±7) keV							
А	N(Atom%)	Class	$\sigma_{o}(mb)$	Ngoc	N ₈	Nr	A
144 147 148 149 150 152 154	$\begin{array}{r} 2.87 \\ 14.94 \\ 11.24 \\ 13.85 \\ 7.36 \\ 26.90 \\ 22.84 \end{array}$	p(m) rs s-0 rs s-0 rs r-0	$\begin{array}{r} 119\pm55\\ 1,173\pm192\\ 258\pm48\\ 1,622\pm279\\ 370\pm72\\ 411\pm71\\ 325\pm61 \end{array}$	$\begin{array}{c} (2,850) \\ 2,930 \pm 540 \\ (2,850) \\ 2,770 \pm 535 \\ (2,850) \\ 0 \end{array}$	$2 \cdot 4 \pm 0 \cdot 4 \\ 1 \cdot 8 \pm 0 \cdot 3 \\ 6 \cdot 9 \pm 1 \cdot 0 \\ 0$	$12.5 \pm 0.4 \\ 12.1 \pm 0.3 \\ 20.0 \pm 1.0 \\ 22.84$	147 149 152 154

The production process (column 3) is from ref. 1. The r-process abundances are derived by assuming $N_s\sigma_c$ constant for all the isotopes of samarium.

more sensitive indicator is found in the $N\sigma_c(150)/N\sigma_c(148)$ ratio. First, the r-process is shielded, and secondly the abundance of samarium-150 is only about half that of samarium-149. The samarium-149 depletion is then:

$$\frac{\Delta N (149)}{N (149)} = \frac{7.36}{13.85} \left[(1.02 \pm 0.06) - 1 \right]$$

which gives an upper limit of 4 per cent for selective depletion, applicable to solar system material as discussed here. It should be mentioned' that inclusion of minor secondary processes such as (p, γ) and (γ, n) reactions and neutron resonance effects can increase the uncertainties in this limit by perhaps a factor of two.

In summary the following conclusions may be drawn from the samarium results.

(1) The near equivalence of $N\sigma_c$ for samarium-148 and samarium-150 is in excellent agreement with the predictions of Burbidge et al.¹.

(2) At the same time these results provide some constraints for nucleosynthesis models^{1,2}.

T

Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Visiting scientist from National Institute of Radiological Sciences, Chiba, Japan.

¹ Burbidge, E. M., Burbidge, G. R., Fowler, W. A., and Hoyle, F., Revs. Mod. Phys., 29, 547 (1957).

² Fowler, W. A., Greenstein, J. L., and Hoyle, F., *Geophys. J. Roy. Astron.* Soc., 6, 148 (1962). ³ Macklin, R. L., Inada, T., and Gibbons, J. H., Nature, 194, 1272 (1962).

Clayton, D. D. (private communication).

Murthy, V. R., and Schmitt, R. A., J. Geophys. Res. (in the press).

⁶ Pattenden, N. J. (unpublished results).

⁷ Fowler, W. A. (private communication).

A New ²II-X²II Band System of Nitrogen Sulphide

THE spectrum of nitrogen sulphide is excited by means of a micro-wave oscillator of 2,450 Mc/s in sealed quartz discharge tubes containing a few mm of nitrogen and traces of sulphur. Besides the β - and γ -bands, a number of hitherto unassigned bands, degraded to the red, are recorded in the region 2650-2850 Å. These are photographed on a 6.6-m concave grating spectrograph in the second order at a dispersion of 0.57 Å/mm. Rotational structure of seven bands has been analysed and the results are reported in the present communication.

Each band consists of two sub-bands with an average separation of 107 cm⁻¹. One such band at 2775 Å is shown in Fig. 1, where the rotational structure of the two sub-bands extends towards the longer wave-lengths as indicated by leading lines. The sub-band shown at the top in the spectrogram has two P and two R branches while the other sub-band with leading lines drawn below has only single series of P and R branches. Such a doubling in the case of P and R branches of only one subband is obtained in the ${}^{2}\Pi_{1/2} - {}^{2}\Pi_{1/2}$ component of a ${}^{2}\Pi - {}^{2}\Pi$ transition with an appreciable Λ -type doubling in the ${}^{2}\Pi_{1/2}$ states while in the ${}^{2}\Pi_{3/2} {}^{-2}\Pi_{3/2}$ component the Λ -doubling is negligible.

$${}^{2}\overline{11}_{1/2} - {}^{2}\overline{11}_{1/2}$$
 ${}^{2}\overline{11}_{3/2} - {}^{2}\overline{11}_{3/2}$

Fig. 2. Energy-level diagram of the vibrational levels of the ${}^{2}\Pi - X^{2}\Pi$ band system

Four bands of ${}^{2}\Pi_{1/2} - {}^{2}\Pi_{1/2}$ and three of ${}^{2}\Pi_{3/2} - {}^{2}\Pi_{3/2}$ transitions have been analysed and their respective vibrational levels are given in an energy-level diagram in Fig. 2. It is found that all the bands arise from different initial vibrational levels to the v'' = 0 level of the final ² Π state. The band system belongs to a ${}^{2}\Pi$ (a)- ${}^{2}\Pi$ (a) transition with large

spin-splitting in both the states. A comparison of the $\Delta_2 F''_1$ (J + 1/2) and $\Delta_2 F''_2$ (J + 1/2)values, that is, R(J - 1) - P(J + 1), of the ²ll_{1/2} and ²\Pi_{3/2} sub-states of the final ² Π level with those obtained for the v'' =0 of final levels of the β - and γ -systems^{1,2} shows good agreement, thereby indicating that all the three band systems have the ²II ground state as the common final level. N. A. NARASIMHAM

K. SRIKAMESWARAN

Analytical Division, Atomic Energy Establishment Trombay, Bombay 28.

¹ Barrow, R. F., Drummond, G., and Zeeman, P. B., Proc. Phys. Soc., 67, A, 365 (1954). ² Zeeman, P. B., Canad. J. Phys., 29, 174 (1951).

© 1963 Nature Publishing Group