Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The afterglow, redshift and extreme energetics of the γ-ray burst of 23 January 1999

Abstract

Long-lived emission, known as afterglow, has now been detected from about a dozen γ-ray bursts. Distance determinations place the bursts at cosmological distances, with redshifts, z, ranging from 1 to 3. The energy required to produce these bright γ-ray flashes is enormous: up to 1053 erg, or 10 per cent of the rest-mass energy of a neutron star, if the emission is isotropic. Here we present optical and near-infrared observations of the afterglow of GRB990123, and we determine a redshift of z 1.6. This is to date the brightest γ-ray burst with a well-localized position and if the γ-rays were emitted isotropically, the energy release exceeds the rest-mass energy of a neutron star, so challenging current theoretical models of the sources. We argue, however, that our data may provide evidence of beamed (rather than isotropic) radiation, thereby reducing the total energy released to a level where stellar-death models are still tenable.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discovery image of the optical counterpart of GRB990123.
Figure 2: Optical and infrared light curves of the transient afterglow of GRB990123 from 4 hours to 23 days after the burst.
Figure 3: The spectrum of the optical transient of GRB990123.

Similar content being viewed by others

References

  1. Klebesadel, R. W., Strong, I. B. & Olson, R. A. Observations of gamma-ray bursts of cosmic origin. Astrophys. J. 182, L85– L88 (1973).

    Article  ADS  Google Scholar 

  2. Metzger, M. R. et al. Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of May 8, 1997. Nature 387 , 878–879 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Boella, G. et al. BeppoSAX, the wide band mission for x-ray astronomy. Astron. Astrophys. Suppl. Ser. 122, 299– 399 (1997).

    Article  ADS  Google Scholar 

  4. Levine, A. M. et al. First results from the All-Sky Monitor on the Rossi X-ray Timing Explorer. Astrophys. J. 469, L33– L36 (1996).

    Article  ADS  Google Scholar 

  5. Costa, E. et al. Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature 387, 783– 785 (1997).

    Article  ADS  CAS  Google Scholar 

  6. van Paradijs, J. et al . Transient optical emission from the error box of the γ-ray burst of 28 February 1997. Nature 386, 686 –689 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Frail, D. A., Kulkarni, S. R., Nicastro, L., Feroci, M. & Taylor, G. B. The radio afterglow from the γ-ray burst of 8 May 1997. Nature 389, 261– 263 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Kulkarni, S. R. et al . Identification of a host galaxy at redshift z = 3.42 for the γ-ray burst of 14 December 1997. Nature 393, 35–39 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Djorgovski, S. G. et al . Spectroscopy of the host galaxy of the gamma-ray burst 980703. Astrophys. J. 508, L17– L20 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Djorgovski, S. G. et al. GRB980613: Spectroscopy of the host galaxy. GCN Circ. No. 189 (1999).

  11. Grindlay, J. Fast X-ray transients and gamma-ray bursts: constraints on beaming. Astrophys. J. 510, 710–714 (1999).

    Article  ADS  Google Scholar 

  12. Greiner, J., Voges, W., Boiler, T. & Hartmann, D. Search for GRB afterglows in the ROSAT all-sky survey. Astron. Astrophys. (submitted).

  13. Heise, J. et al. Avery energetic γ-ray burst on January 23 1999 and its X-ray afterglow. Nature (submitted).

  14. Kippen, R. M. GRB990123: BATSE observations. GCN Circ. No. 224 ( 1999).

  15. Piro, L. GRB990123, BeppoSAX WFC detection and NFI planned follow-up. GCN Circ. No. 199 (1999).

  16. The GRB Coordinates Network at 〈http://gcn.gsfc.nasa.gov/gcn/ 〉.

  17. Beckwith, S. For immediate posting to GCN — HST Data GRB990123 available. GCN Note No. 254 (1999).

  18. Bloom, J. S. et al. The host galaxy of GRB990123. Preprint astro-ph/9902182 at 〈http://xxx.lanl.gov〉 (1999).

  19. Katz, J. I. Low-frequency spectra of gamma-ray bursts. Astrophys. J. 432, L110–L113 (1994).

    ADS  Google Scholar 

  20. Mészáros, P. & Rees, M. J. Optical and long-wavelength afterglow from gamma-ray bursts. Astrophys. J. 476, 232–240 (1997).

    Article  ADS  Google Scholar 

  21. Vietri, M. The soft X-ray afterglow of gamma-ray bursts, a stringent test for the fireball model. Astrophys. J. 478, L9– L12 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Waxman, E. Gamma-ray-burst afterglow: supporting the cosmological fireball model, constraining parameters, and making predictions. Astrophys. J. 485 , L5–L8 (1997).

    Article  ADS  Google Scholar 

  23. Sari, R., Piran, T. & Narayan, R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. 497, L17– L20 (1998).

    Article  ADS  Google Scholar 

  24. Wijers, R. A. M. J. & Galama, T. J. Physical parameters of GRB970508 and GRB971214 from their afterglow synchrotron emission. Preprint astro-ph/9806175 at 〈http://xxx.lanl.gov〉 (1998).

  25. Ramaprakash, A. N. et al. The energetic afterglow of the γ-ray burst of 14 December 1997. Nature 393, 43– 46 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Sokolov, V. V. et al . BVR C I C photometry of GRB970508 optical remnant: May–August 1997. Astron. Astrophys. 334, 117–123 ( 1998).

    ADS  Google Scholar 

  27. Groot, P. et al. The decay of optical emission from the γ-ray burst GRB970228. Nature 387, 479–481 (1997).

    Article  ADS  Google Scholar 

  28. Falco, E., Petry, C., Impey, C., Koekemoer, A. & Rhoads, J. GRB990123 optical observations. GCN Circ. No. 214 (1999).

  29. Oke, J. B. et al. the Keck Low-Resolution Imaging Spectrometer. Publ. Astron. Soc. Pacif. 107, 375–385 (1995).

    Article  ADS  Google Scholar 

  30. Hjorth, J. et al. GRB990123 spectroscopic redshifts. GCN Circ. No. 219 (1999).

  31. Steidel, C. C. & Sargent, W. L. W. MgII absorption in the spectra of 103 QSOs: implications for the evolution of gas in high-redshift galaxies. Astrophys. J. Suppl. Ser. 80, 1– 108 (1992).

    Article  ADS  CAS  Google Scholar 

  32. Hjorth, J. et al. GRB990123 NOT spectrum update. GCN Circ. No. 249 (1999).

  33. Akerlof, C. et al. Observation of contemporaneous optical radiation from a γ-ray burst. Nature 398, 400– 402 (1999).

    Article  ADS  CAS  Google Scholar 

  34. Sari, R. & Piran, T. GRB900123, The optical flash and the fireball model. Preprint astro-ph/9902009 at 〈 http://xxx.lanl.gov 〉 (1999).

  35. Pen, U.-L. & Loeb, A. Gamma-ray bursts from baryon decay in neutron stars. Astrophys. J. 509, 537– 543 (1998).

    Article  ADS  CAS  Google Scholar 

  36. Djorgovski, S. G. et al. GCN Circ. No. 216 (1999 ).

  37. Holz, D. E., Coleman, M. M. & Quashnock, J. M. Gravitational lensing limits on the average redshift of gamma-ray bursts. Astrophys. J. 510, 54–63 (1999).

    Article  ADS  CAS  Google Scholar 

  38. Schaefer, B. E. GRB990123, probability of gravitational lensing. GCN Circ. No. 241 (1999).

  39. Mochkovich, R., Hernanz, M., Isern, J. & Martin, X. Gamma-ray bursts as collimated jets from neutron star/black hole mergers. Nature 361, 236–237 (1993).

    Article  ADS  Google Scholar 

  40. Mao, S. & Yi, I. Relativistic beaming and gamma-ray bursts. Astrophys. J. 424, L131– L134 (1994).

    Article  ADS  Google Scholar 

  41. Katz, J. I. Yet another model for gamma ray bursts. Astrophys. J. 490, 633–640 (1997).

    Article  ADS  CAS  Google Scholar 

  42. Mészáros, P. & Rees, M. J. Poynting jets from black holes and cosmological gamma-ray bursts. Astrophys. J. 482, L29–L32 (1997).

    Article  ADS  Google Scholar 

  43. Dar, A. Can fireball models explain gamma-ray bursts? Astrophys. J. 500, L93–L96 (1998).

    Article  ADS  Google Scholar 

  44. Rhoads, J. E. How to tell a jet from a balloon: a proposed test for beaming in gamma-ray bursts. Astrophys. J. 478, L1– L4 (1997).

    Article  ADS  Google Scholar 

  45. Pedersen, H. et al. Evidence for diverse optical emission from gamma-ray burst sources. Astrophys. J. 496, 311– 315 (1998).

    Article  ADS  Google Scholar 

  46. Galama, T. et al. Optical follow up of GRB970508. Astrophys. J. 497, L13–L16 (1998).

    Article  ADS  Google Scholar 

  47. Bloom, J. S., Djorgovski, S. G., Kulkarni, S. R. & Frail, D. A. The host galaxy of GRB970508. Astrophys. J. 507, L25–L28 (1998).

    Article  ADS  CAS  Google Scholar 

  48. Fruchter, A. S. et al . The fading optical counterpart of GRB970228, six months and one year later. Preprint astro-ph/9807295 at 〈http://xxx.lanl.gov 〉 (1998).

  49. Frail, D. A., Bloom, J. S., Kulkarni, S. R. & Taylor, G. B. The light curve and the spectrum of the radio afterglow of GRB980703. Astrophys. J. (submitted).

  50. Waxman, E., Kulkarni, S. R. & Frail, D. A. Implications of the radio afterglow from the gamma-ray burst of 1997 May 8. Astrophys. J. 497, 288–293 (1998).

    Article  ADS  Google Scholar 

  51. Rhoads, J. E. Constraining gamma ray burst beaming. Preprint, Kitt Peak National Observatory (1998).

  52. Mészáros, P. & Rees, M. J. GRB990123: reverse and internal shock flashes and late afterglow behavior. Preprint astro-ph/9902367 at 〈 http://xxx.lanl.gov〉 (1999).

  53. Sagar, R. et al. Optical follow up of the GRB990123 source from UPSO, Nainital. Preprint astro-ph/9902196 at 〈http://xxx.lanl.gov〉 (1999).

  54. Masetti, N. et al. GRB990123, optical BVRI observations. GCN Circ. No. 233 (1999).

  55. Garnavich, P., Jha, S., Stanek, K. & Garcia, M. GRB990123, optical observation. GCN Circ. No. 215 (1999).

  56. Thuan, T. X. & Gunn, J. E. Anew four-colour intermediate-band photometric system. Proc. Astron. Soc. Pacif. 88, 543–547 (1976).

    Article  ADS  Google Scholar 

  57. Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713 –717 (1983).

    Article  ADS  CAS  Google Scholar 

  58. Landolt, A. UBVRI photometric standard stars in the magnitude range 11.5–16.0 around the celestial equator. Astron. J. 104, 340 –376 (1992).

    Article  ADS  Google Scholar 

  59. Zhu, J. & Zhang, H. T. GRB990123 optical observation. GCN Circ. No. 204 (1999).

  60. Monet, D. G. The 526,280,881 objects in the USNO-A2.0 catalog. Bull. Am. Astron. Soc. 193, 225 (1998).

    Google Scholar 

  61. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    Article  ADS  Google Scholar 

  62. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in C 683–699 (Cambridge Univ. Press, New York, (1992).

    MATH  Google Scholar 

Download references

Acknowledgements

We thank G. Neugebauer for obtaining infrared data on 29 January 1999. We thank A. Filippenko, L. Hillenbrand, J. Carpenter and K. Leighly for agreeing to exchange telescope time, thereby enabling us to follow up this GRB, and B. Oppenheimer for help with observations. Some of the observations reported here were obtained at the W. M. Keck Observatory, which is operated by the California Association for Research in Astronomy, a scientific partnership among California Institute of Technology, the University of California and NASA. It was made possible by the support of the W. M. Keck Foundation. S.R.K.'s research is supported by the NSF and NASA. S.G.D. acknowledges partial support from the Bressler Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Kulkarni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkarni, S., Djorgovski, S., Odewahn, S. et al. The afterglow, redshift and extreme energetics of the γ-ray burst of 23 January 1999. Nature 398, 389–394 (1999). https://doi.org/10.1038/18821

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18821

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing