Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism

Abstract

The presence of magmatism and intermediate-depth (70–300 km deep) seismicity at subduction zones is at first sight surprising. Magmatism is unexpected because the subduction of cool oceanic lithosphere makes these regions the coldest in the mantle. The current model for subduction-zone magmatism is that water released from the subducting slab enters the relatively warm mantle wedge, leading to a reduction in melting temperature and magmatism1,2,3,4. But there is a problem with this scheme because it is thought that water cannot leave the slab by porous flow to enter the wedge. The occurrence of intermediate-depth earthquakes is surprising because of the inhibitory effect of the very high frictional stress on faults expected from the high pressure at these depths. One proposal put forward to explain intermediate-depth seismicity is that high pore-pressure might facilitate faulting by decreasing the friction5,6,7. The hypothesis presented here is that non-percolating water provides the high pore-pressure, that the consequent faulting temporarily interconnects the water pores and, when a sufficient vertical height of water is interconnected, a hydrofracture is produced which transports the water out into the mantle wedge, thereby generating subduction-zone magmatism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of proposed hypothesis.

Similar content being viewed by others

References

  1. Gill, J. Orogenic Andesites and Plate Tectonics (Springer, Berlin, 1981).

    Book  Google Scholar 

  2. Tatsumi, Y. & Eggins, S. Subduction Zone Magmatism (Blackwell, Cambridge, MA, 1995).

    Google Scholar 

  3. Pearce, J. A. & Peate, D. W. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 23, 251–285 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Davies, J. H. & Stevenson, D. J. Physical model of source region of subduction zone volcanics. J. Geophys. Res. 97, 2037–2070 (1992).

    Article  ADS  Google Scholar 

  5. Hubbert, M. K. & Rubey, W. W. Role of fluid pressure in mechanics of overthrust faulting I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geol. Soc. Am. Bull. 70, 115–206 (1959).

    Article  ADS  Google Scholar 

  6. Green, H. W. & Houston, H. The mechanics of deep earthquakes. Annu. Rev. Earth Planet. Sci. 23, 169–213 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Kirby, S., Engdahl, E. R. & Denlinger, R. in Subduction: Top to Bottom (eds Bebout, G. E., Scholl, D. W., Kirby, S. H. & Platt, J. P.) 195–214 (Am. Geophys. Union, Washington DC, 1996)

    Google Scholar 

  8. Davies, J. H. in Magmatic Systems (ed. Ryan, M. P.) 197–221 (Academic, San Diego, 1994).

    Book  Google Scholar 

  9. Watson, B. E. & Brenan, J. M. Fluids in the lithosphere, Part 1: Experimentally-determined wetting characteristics of CO2 –H2O fluids and their implications for fluid transport, host-rock physical properties and fluid inclusion formation. Earth Planet. Sci. Lett. 85, 497–515 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Watson, E. B., Brenan, J. M. & Baker, D. R. in Continental Mantle (ed. Menzies, M. A.) 111–125 (Clarendon, Oxford, 1990).

    Google Scholar 

  11. Watson, E. B. & Lupulescu, A. Aqueous fluid connectivity and chemical transport in clinopyroxene-rich rocks. Earth Planet. Sci. Lett. 117, 279–294 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Elliott, M. T. The Three-dimensional Numerical Simulation of Crystallizing Media. Thesis, Univ. Liverpool 1998).

    Google Scholar 

  13. Waff, H. S. & Bulau, J. R. Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. J. Geophys. Res. 84, 6109–6114 (1979).

    Article  ADS  Google Scholar 

  14. Wong, T.-f., Ko, S.-c. & Olgaard, D. L. Generation and maintenance of pore pressure excess in a dehydrating system 2. Theoretical analysis. J. Geophys. Res. 102, 841–852 (1997).

    Article  ADS  Google Scholar 

  15. Nakashima, Y. Buoyancy-driven propagation of an isolated fluid-filled crack in rock: Implications for fluid transport in metamorphism. Contrib. Mineral. Petrol. 114, 289–295 (1993).

    Article  ADS  Google Scholar 

  16. Nishiyama, T. Kinetics of hydrofracturing and metamorphic veining. Geology 17, 1068–1071 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Knapp, R. B. & Knight, J. E. Differential thermal expansion of pore fluids: Fracture propagation and microearthquake production in hot pluton environments. J. Geophys. Res. 82, 2515–2522 (1977).

    Article  ADS  Google Scholar 

  18. Connolly, J. A. D. Devolatilization-generated fluid pressure and deformation-propagated fluid flow during prograde regional metamorphism. J. Geophys. Res. 102, 18149–18173 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Raleigh, C. B. & Paterson, M. S. Experimental deformation of serpentinite and its tectonic implications. J. Geophys. Res. 70, 3965–3985 (1965).

    Article  ADS  Google Scholar 

  20. Kirby, S. H. Intraslab earthquakes and phase changes in subducting lithosphere. Rev. Geophys. (suppl.) U.S. National Report to the I.U.G.G. 1990–1994, 287–297 (1995).

  21. Meade, C. & Jeanloz, R. Deep-focus earthquakes and recycling of water into the Earth's mantle. Science 252, 68–72 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Lockner, D. A., Byerlee, J. D., Kuksenko, V., Ponomarev, A. & Sidorin, A. Quasi-static fault growth and shear fracture energy in granite. Nature 350, 39–42 (1991).

    Article  ADS  Google Scholar 

  23. Du, Y. & Aydin, A. Interaction of multiple cracks and formation of echelon crack arrays. Int. J. Numerical Anal. Meth. Geomech. 15, 205–218 (1991).

    Article  Google Scholar 

  24. Horii, H. & Nemat-Nasser, S. Compression-induced microcrack growth in brittle solids: axial splitting and shear fracture. J. Geophys. Res. 90, 3105–3125 (1985).

    Article  ADS  Google Scholar 

  25. Teufel, L. W. in Mechanical Behavior of Crustal Rocks, The Handin Volume (eds Carter, N. L., Friedman, M., Logan, J. M. & Stearns, D. W.) 135–145 (Am. Geophys. Union, Washington DC, 1981).

    Google Scholar 

  26. Sibson, R. H. Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics 211, 283–293 (1992).

    Article  ADS  Google Scholar 

  27. Ferry, J. M. Ahistorical review of metamorphic fluid flow. J. Geophys. Res. 99, 15487–15498 (1994).

    Article  ADS  Google Scholar 

  28. McCaig, A. M. Deep fluid circulation in fault zones. Geology 16, 867–870 (1988).

    Article  ADS  Google Scholar 

  29. Philippot, P. & Selverstone, J. Trace-element-rich brines in eclogitic veins: implications for fluid composition and transport during subduction. Contrib. Mineral. Petrol. 106, 417–430 (1991).

    Article  ADS  CAS  Google Scholar 

  30. Barnicoat, A. C. & Cartwright, I. Focused fluid flow during subduction: Oxygen isotope data from high-pressure ophiolites of the western Alps. Earth Planet. Sci. Lett. 132, 53–61 (1995).

    Article  ADS  CAS  Google Scholar 

  31. Hoogerduijn Strating, E. H. & Vissers, R. L. M. Dehydration-induced fracturing of eclogite-facies peridotites: implications for the mechanical behaviour of subducting oceanic lithosphere. Tectonophysics 200, 187–198 (1991).

    Article  ADS  Google Scholar 

  32. Rubin, A. M. Propagation of magma-filled cracks. Annu. Rev. Earth Planet. Sci. 23, 287–336 (1995).

    Article  ADS  CAS  Google Scholar 

  33. Fialko, Y. A. & Rubin, A. M. Numerical simulation of high-pressure rock tensile fracture experiments: Evidence of an increase in fracture energy with pressure? J. Geophys. Res. 102, 5231–5242 (1997).

    Article  ADS  Google Scholar 

  34. Apperson, K. D. & Frohlich, C. The relationship between Wadati-Benioff Zone geometry and P, T and B axes of intermediate and deep focus earthquakes. J. Geophys. Res. 92, 13821–13831 (1987).

    Article  ADS  Google Scholar 

  35. Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res. 102, 14991–15019 (1997).

    Article  ADS  CAS  Google Scholar 

  36. Hawkesworth, C. J., Gallagher, K., Hergt, J. M. & McDermott, F. Trace element fractionation processes in the generation of island arc basalts. Phil. Trans. R. Soc. Lond. A 342, 171–191 (1993).

    ADS  Google Scholar 

  37. Poli, S. & Schmidt, M. W. H2O transport and release in subduction zones: Experimental constraints on basaltic and andesitic systems. J. Geophys. Res. 100, 22299–22314 (1995).

    Article  ADS  CAS  Google Scholar 

  38. Rubin, A. M. & Gillard, D. Dike-induced earthquakes: Theoretical considerations. J. Geophys. Res. 103, 10017–10030 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank M. Cheadle and T. Elliott for discussions, and S. Kirby and B. Minarik for comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Huw Davies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, J. The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism. Nature 398, 142–145 (1999). https://doi.org/10.1038/18202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18202

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing