Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Improved quantum efficiency for electroluminescence in semiconducting polymers

Abstract

Some conjugated polymers have luminescence properties that are potentially useful for applications such as light-emitting diodes, whose performance is ultimately limited by the maximum quantum efficiency theoretically attainable for electroluminescence1, 2,. If the lowest-energy excited states are strongly bound excitons (electron–hole pairs in singlet or triplet spin states), this theoretical upper limit is only 25% of the corresponding quantum efficiency for photoluminescence: an electron in the π*-band and a hole (or missing electron) in the π-band can form a triplet with spin multiplicity of three, or a singlet with spin multiplicity of one, but only the singlet will decay radiatively3. But if the electron–hole binding energy is sufficiently weak, the ratio of the maximum quantum efficiencies for electroluminescence and photoluminescence can theoretically approach unity. Here we report a value of 50% for the ratio of these efficiencies (electroluminescence:photoluminescence) in polymer light-emitting diodes, attained by blending electron transport materials with the conjugated polymer to improve the injection of electrons. This value significantly exceeds the theoretical limit for strongly bound singlet and triplet excitons, assuming they comprise the lowest-energy excited states. Our results imply that the exciton binding energy is weak, or that singlet bound states are formed with higher probability than triplets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: External electroluminescence quantum efficiency, QEext(EL), as a function of film thickness.
Figure 2: Temperature dependence of QEext(EL) and QEext(PL).
Figure 3: Comparison of external QEext(EL), filled circles, with QEext(PL), for devices with different luminescent polymer thickness.

Similar content being viewed by others

References

  1. Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Braun, D. & Heeger, A. J. Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 58, 1982–1984 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Bradley, D. D. C. Conjugated polymer electroluminescence. Synth. Met. 54, 401–415 (1993).

    Article  CAS  Google Scholar 

  4. Parker, I. D. Carrier tunneling and device characteristics in polymer light-emitting diodes. J. Appl. Phys. 75, 1656–1666 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Campbell, I. H., Hagler, T. W., Smith, D. L. & Ferraris, J. P. Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures. Phys. Rev. Lett. 76, 1900–1903 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Richter, M. M., Fan, F., Klavetter, F., Heeger, A. J. & Bard, A. Electrochemistry and electrogenerated chemiluminescence of films of the conjugated polymer 4-methoxy-(2-ethylhexyloxy)-2,5-polyphenylenevinylene. Chem. Phys. Lett. 226, 115–120 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Brom, P., Birgersson, J., Johansson, N., Logdland, M. & Salaneck, W. R. Calcium electrodes in polymer LEDs. Synth. Met. 74, 179–181 (1995).

    Article  Google Scholar 

  8. Yang, Y., Westerweele, E., Zhang, C., Smith, P. & Heeger, A. J. Enhanced performance of polymer light-emitting diodes using high-surface area polyaniline network electrodes. J. Appl. Phys. 77, 694–698 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Gao, J., Heeger, A. J., Lee, J. Y. & Kim, C. Y. Soluble polypyrrole as the transparent anode in polymer light-emitting diodes. Synth. Met. 82, 221–223 (1996).

    Article  CAS  Google Scholar 

  10. Cao, Y., Yu, G., Zhang, C., Menon, R. & Heeger, A. J. Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode. Synth. Met. 87, 171–174 (1997).

    Article  CAS  Google Scholar 

  11. Kuhn, H. Classical aspects of energy transfer in molecular systems. J. Chem. Phys. 53, 101–108 (1970).

    Article  ADS  CAS  Google Scholar 

  12. Greenham, N. C. Understanding the limits to performance in electronic devices based on PPV. Bull. Am. Phys. Soc. 43 (1), 14 (1998).

    Google Scholar 

  13. Blom, P. W. M., de Jong, M. J. M. & Vleggaar, J. J. M. Electron and hole transport in poly(p-phenylene vinylene). Appl. Phys. Lett. 68, 3308–3310 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Blom, P. W. M., de Jong, M. J. M. & Munster, M. G. Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene). Phys. Rev. B 55, 656–659 (1997).

    Article  ADS  Google Scholar 

  15. Blom, P. W. M., de Jong, M. J. M. & Breedijk, S. Temperature dependence electron-hole recombination in polymer light-emitting diodes. Appl. Phys. Lett. 71, 930–932 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Greenham, N. C. et al. Measurement of absolute photoluminescence quantum efficiencies in conjugated polymer. Chem. Phys. Lett. 241, 89–96 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Schmidt, A., Anderson, M. L. & Armstrong, N. R. Electronic states of vapor deposited electron and hole transport agents and luminescent materials for light-emitting diodes. J. Appl. Phys. 78, 5619–5625 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Kersting, R. et al. Ultrafast field-induced dissociation of excitons in conjugated polymers. Phys. Rev. Lett. 73, 1440–1443 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Moses, D. et al. Mechanism of carrier generation in poly(phenylene vinylene): Transient photoconductivity and photoluminescence at high fields. Phys. Rev. B 54, 4748–4754 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Greenham, N. C., Friend, R. H. & Bradley, D. D. C. Angular dependence of the emission from a conjugated polymer light-emitting diode: implications for efficiency calculations. Adv. Mater. 6, 491–494 (1994).

    Article  CAS  Google Scholar 

  21. Lemmer, U. et al. Electroluminescence from poly(phenylene vinylene) in a planar metal-polymer-metal structure. Appl. Phys. Lett. 68, 3007–3009 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Sariciftci, N. S. (ed.) Primary Photoexcitations in Conjugated Polymers: Molecular Excitons vs Semiconductor Band Model (World Scientific, Singapore, (1997)).

    Google Scholar 

  23. Smilowitz, L. & Heeger, A. J. Photoinduced absorption from triplet excitations in poly(2-methoxy,5-(2′-ethylhexyloxy)-p-phenylene vinylene) oriented by gel processing in polyethylene. Synth. Met. 48, 193–196 (1992).

    Article  CAS  Google Scholar 

  24. Hide, F. et al. Semiconducting polymers: a new class of solid state laser materials. Science 273, 1833–1836 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Research at UNIAX was partially supported by the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Parker, I., Yu, G. et al. Improved quantum efficiency for electroluminescence in semiconducting polymers. Nature 397, 414–417 (1999). https://doi.org/10.1038/17087

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/17087

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing