Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Conditioning Regimens

Amifostine prior to lethal irradiation prevents allogeneic bone marrow engraftment in mice

Abstract

We and others have demonstrated that the milieu created by ionizing radiation (IR) used for conditioning plays a major role in the development of acute graft-versus-host disease (aGVHD). We reasoned that antioxidants that could inhibit IR induction of inflammatory cytokines and/or apoptosis might reduce the incidence or severity of aGVHD. Therefore, BALB/c mice were treated with amifostine, n-acetyl cysteine (NAC) or pyrrolidine dithiocarbamate (PDTC) prior to transplantation with allogeneic C57Bl/6 bone marrow and spleen cells. None of 30 amifostine-pretreated mice developed weight loss or other signs of aGVHD and they rejected their allogeneic transplants. However, pretreatment to groups of five mice each with molar equivalent doses of NAC or PDTC accelerated death, and lower doses did not prevent aGVHD. In vitro tests demonstrated that PDTC and NAC acted as pro-oxidants when incubated with isolated normal mouse lymphocytes, whereas amifostine and its active metabolite WR-1065 did not. The conclusion that amifostine protected immune function from IR in vivo was further supported by the fact that amifostine and WR-1065 preserved the response of radiated normal lymphocytes to respond to PHA and both stimulated growth of non-radiated, non-PHA-treated normal lymphocytes in vitro. Taken together, these data caution the use of amifostine in allogeneic transplantation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Erol FS, Topsakai C, Ozveren MF, Kaplan M, Ilhan N, Ozerman IH et al. Protective effects of melatonin and vitamin E in brain damage due to gamma radiation: an experimental study. Neurosurg Rev 2004; 27: 65–69.

    Article  Google Scholar 

  2. Hospers GAP, Eisenhauer EA, de Vries EGE . The sulfhydryl containing compounds WR-2721 and glutathione as radio- and chemoprotective agents. A review: indications for use and prospects. Br J Can 1999; 80: 629–638.

    Article  CAS  Google Scholar 

  3. Movsas B, Scott C, Langer C, Werner-Wasik M, Nicolaou N, Komaki R et al. Randomized trial of amifostine in locally advanced non-small cell lung cancer patients receiving chemotherapy and hyperfractionated radiation: Radiation Therapy Oncology Group Trial 98–01. J Clin Oncol 2005; 23: 2145–2154.

    Article  CAS  Google Scholar 

  4. Cassatt DR, Fazenbaker CA, Kifle G, Bachy CM . Preclinical studies of the radioprotective efficacy and pharmacokinetics of subcutaneously administered amifostine. Semin Oncol 2002; 29: 2–8.

    Article  CAS  Google Scholar 

  5. Malmberg K-J . Effective immunotherapy against cancer. Cancer Immunol Immunother 2004; 53: 879–892.

    Article  CAS  Google Scholar 

  6. Block KI, Koch AC, Mead MN, Tothy PK, Newman RA, Gyllenhaal C . Impact of antioxidant supplementation on chemotherapeutic efficacy: a systematic review of the evidence from randomized controlled trials. Cancer Treat Rev 2007; 33: 407–418.

    Article  CAS  Google Scholar 

  7. Colombo AA, Alessandrina EP, Bernasconi P, Arcese GW, Rabusin M, Bacigalupa A et al. N-Acetyl cysteine in the treatment of steroid-resistant acute graft-versus-host disease. Transplantation 1999; 68: 1414–1416.

    Article  CAS  Google Scholar 

  8. Grdina DJ, Murley JS, Kataoka Y . Radioprotectants: current status and new directions. Oncology 2002; 63 (Suppl 2): 2–10.

    Article  CAS  Google Scholar 

  9. Xun CQ, Thompson JS, Jennings CD, Brown SA, Widmer MB . Effect of total body irradiation, busulfan–cyclophosphamide or cyclophosphamide conditioning on inflammatory cytokine release and development of acute and chronic graft-versus-host disease in H-2 incompatible transplanted SCID mice. Blood 1994; 83: 2360–2366.

    CAS  PubMed  Google Scholar 

  10. Xun CQ, Tsuchida M, Thompson JS . Delaying transplantation after total body irradiation is a simple and effective way to reduce acute graft-versus-host disease mortality after major H2 incompatible transplantation. Transplantation 1997; 64: 297–302.

    Article  CAS  Google Scholar 

  11. Ferrara JLM, Abhyankar S, Gilliland DG . Cytokine storm of graft-versus-host disease: a critical role of interleukin-1. Transplant Proc 1993; 25: 1216–1217.

    CAS  PubMed  Google Scholar 

  12. Holler E, Kolb HJ, Moller A, Kempini A, Liesenfeld S, Pechumer H et al. Increased serum levels of tumor necrosis factor alpha precede major complications of bone marrow transplantation. Blood 1990; 75: 1011–1016.

    CAS  PubMed  Google Scholar 

  13. Araki S, Dobashi K, Kubo K, Yamamoto Y, Asayama K, Shirahata A . N-acetylcysteine attenuates TNF-alpha induced changes in secretion of interleukin-6, plasminogen activator inhibitor-1 and adiponectin from 3T3-L1 adipocytes. Life Sci 2006; 79: 2405–2412.

    Article  CAS  Google Scholar 

  14. Parodi FE, Mao D, Terri L, Ennis BS, Bartoli MA, Thompson RW . Suppression of experimental abdominal aortic aneurysms in mice by treatment with pyrrolidine dithiocarbamate, an antioxidant inhibitor of nuclear factor-κB. J Vasc Surg 2005; 41: 479–489.

    Article  Google Scholar 

  15. Asmis R, Wang Y, Xu L, Kisgati M, Begly JG, Mieyal JJ . A novel thiol oxidation-based mechanism for adriamycin-induced cell injury in human macrophages. FASEB J 2005; 19: 1866–1875.

    Article  CAS  Google Scholar 

  16. Thompson JS, Amis R, Glass J, Liu H, Wilson C, Nelson B et al. p53 status influences regulation of HSPs and ribosomal proteins by PDTC and radiation. Biochem Biophys Res Commun 2006; 343: 435–442.

    Article  CAS  Google Scholar 

  17. Sasse AD, de Oliveira G, Clark L, Sasse EC, Clark OAC . Amifostine reduces side effects and improves complete response rate during radiotherapy: results of a meta-analysis. Int J Radiat Oncol Biol Phys 2006; 64: 784–791.

    Article  CAS  Google Scholar 

  18. Taylor CW, Wang LM, List AF, Fernandes D, Paine-Murrieta GD, Johnson CS et al. Amifostine protects normal tissues from paclitaxel toxicity while cytotoxicity against tumour cells is maintained. Eur J Can 1997; 33: 1693–1698.

    Article  CAS  Google Scholar 

  19. Clark LS, Albertini RJ, Nicklas JA . The aminothiol WR-1065 protects T lymphocytes from ionizing radiation-induced deletions of the HPRT gene. Cancer Epidemiol Biomarkers Prev 1997; 6: 1033–1037.

    CAS  PubMed  Google Scholar 

  20. Provinciali M, Ciavattini A, Di Stefano G, Argentati K, Garzette GG . In vivo amifostine (WR-2721) prevents chemotherapy-induced apoptosis of peripheral blood lymphocytes from cancer patients. Life Sci 1999; 64: 1525–1532.

    Article  CAS  Google Scholar 

  21. Rick O, Beyer J, Scgwella N, Siegert W . Influence of amifostine on reconstruction of lymphocyte subpopulations after conventional- and high-dose chemotherapy in patients with germ cell tumors. Ann Hemat 2002; 81: 717–722.

    Article  CAS  Google Scholar 

  22. Koukourakis MJ, Ktenidou-Kartel S, Bourikas G, Kartalis G, Tsatalas C . Amifostine protects lymphocytes during radiotherapy and stimulates expansion of the CD95/Fas and CD31 expressing T-cells, in breast cancer patients. Cancer Immunol Immunother 2003; 52: 127–131.

    CAS  PubMed  Google Scholar 

  23. Hwang WYK, Koh L-P, Ng HJ, Tan PHC, Chuah CTH, Fook SC et al. A randomized trial of amifostine as a cytoprotectant for patients receiving myeloablative therapy for allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2004; 34: 51–56.

    Article  CAS  Google Scholar 

  24. List AF, Heaton R, Glinsmann-Gibson B, Capizzi RL . Amifostine stimulates formation of multipotent and erythroid bone marrow progenitors. Leukemia 1998; 12: 1596–1602.

    Article  CAS  Google Scholar 

  25. Kozer E, McGuigan M . Treatment strategies for early presenting acetaminophen overdose: a survey of medical directors of poison centers in North America and Europe. Hum Exp Toxicol 2002; 21: 123–127.

    Article  CAS  Google Scholar 

  26. Tsai JC, Jain M, Hsieh CM, Lee WS, Yoshizumi M, Patterson C et al. Induction of apoptosis by pyrrolidine dithiocarbamate and N-acetylcysteine in vascular smooth muscle cells. J Biol Chem 1996; 271: 3667–3670.

    Article  CAS  Google Scholar 

  27. Lauzurica P, Martinez-Martinez S, Marazeula M, Gomez del Arco P, Martinez C, Sanchez-Madrid F et al. Pyrrolidine dithiocarbamate protects mice from lethal shock induced by LPS or TNF-alpha. Eur J Immunol 1999; 29: 1890–1900.

    Article  CAS  Google Scholar 

  28. Nemeth SH, Hasko G, Vizi ES . Pyrrolidine dithiocarbamate augments IL-10, inhibits TNF-alpha, MIP-1alpha, IL-12, and nitric oxide production and protects from the lethal effect of endotoxin. Shock 1998; 10: 49–53.

    Article  CAS  Google Scholar 

  29. Shao D-Z, Lee J-J, Huang W-T, Liao J-F, Lin M-T . Inhibition of nuclear factor-kappaB prevents staphylococcal enterotoxin A-induced fever. Mol Cell Biochem 2004; 262: 177–185.

    Article  CAS  Google Scholar 

  30. Gu X-P, Xu F-T, Jiang Y, Qui Y-D, Ding Y-T . Pyrrolidine dithiocarbamate added to University of Wisconsin solution inhibits reperfusion injury after orthotopic liver transplantation in rats. Ann Clin Lab Sci 2004; 34: 187–194.

    CAS  PubMed  Google Scholar 

  31. Kulms D, Zeise E, Poppelmann B, Schwartz T . DNA damage, death receptor activation and reactive oxygen species contribute to ultraviolet radiation-induced apoptosis in an essential and independent way. Oncogene 2002; 21: 5844–5851.

    Article  CAS  Google Scholar 

  32. Qin J-Z, Bacon PA, Panella J, Sitalilo LA, Denning MF, Nickoloff BJ . Low-dose UV-radiation sensitizes keratinocytes to TRAIL-induced apoptosis. J Cell Physiol 2004; 200: 155–166.

    Article  CAS  Google Scholar 

  33. Brennan P, O’Neill LA . 2-Mercaptoethanol restores the ability of nuclear factor κB (NFκB) to bind DNA in nuclear extracts from interleukin 1-treated cells incubated with pyrrolidine dithiocarbamate (PDTC): evidence for oxidation of glutathione in the mechanism of inhibition of NFκB by PDTC. Biochem J 1996; 320: 975–981.

    Article  Google Scholar 

  34. Malaguarnera L, Pilastro MR, DiMarco R, Scitto C, Massarino MC, Messina A . Cell death in human acute myelogenous leukemic cells induced by pyrrolidine dithiocarbamate. Apoptosis 2003; 8: 539–545.

    Article  CAS  Google Scholar 

  35. Victor VM, Rocha M, De la Fuente M . N-Acetylcysteine protects mice from lethal endotoxemia by regulating the redox state of immune cells. Free Radic Res 2003; 37: 919–929.

    Article  CAS  Google Scholar 

  36. Weiss L, Reich S, Zeira M, Or R, Resnick IG, Slavin S et al. N-Acetylcysteine mildly inhibits the graft-versus-leukemia effect but not the lymphokine activated cells (LAK) activity. Transplant Immunol 2007; 17: 198–202.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, J., Asmis, R., Chu, Y. et al. Amifostine prior to lethal irradiation prevents allogeneic bone marrow engraftment in mice. Bone Marrow Transplant 41, 927–934 (2008). https://doi.org/10.1038/sj.bmt.1705995

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705995

Keywords

Search

Quick links