Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Post-Transplant Events

Lymphocyte subsets recovery following allogeneic bone marrow transplantation (BMT): CD4+ cell count and transplant-related mortality

Abstract

To assess the kinetics of lymphocyte subset recovery, 758 allografted patients were monitored by surface markers (CD3, CD4, CD8, CD56), with a 5-year follow-up. The donor was a matched sibling donor (MSD) (n=502) or an alternative donor (family mismatched or unrelated, AD) (n=256). The stem cell source was bone marrow for all patients. CD4+ cell recovery was influenced—in univariate analysis—by three factors: donor type, patient age and GvHD. This was not the case for CD8+ and CD56+ cells. The median CD4+ cell count on day +35 after HSCT was 86/μl. Patients achieving this CD4+ cell count had significantly lower transplant-related mortality (TRM) compared to patients who did not achieve this CD4+ cell count (20 vs 39%, P=0.00001), due to a lower risk of lethal infections (24 vs 47%, P=0.0003). In multivariate analysis MSD (RR 3.45, P=0.0001) and recipient age less than 16 years (RR 3.23, P=0.003) were significantly associated with a better CD4+ cell recovery. CD4+ counts on day +35 was predicted TRM (RR=1.97, P=0.0017) together with acute GvHD grade II–IV (RR 1.59, P=0.0097). No difference of TRM was observed for CD8+ and CD56+ cell counts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Trigg ME . Bone marrow transplantation using Ads. mismatched related donors or closely matched unrelated donors. Am J Pediatr Hematol Oncol 1993; 15: 141–149.

    Article  CAS  PubMed  Google Scholar 

  2. Szydlo R, Goldman JM, Klein JP, Gale RP, Ash RC, Bach FH et al. Results of allogenic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J Clin Oncol 1997; 15: 1767–1777.

    Article  CAS  PubMed  Google Scholar 

  3. Auletta JJ, Lazarus HM . Immune restoration following hematopoietic stem cell transplantation: an evolving target. Bone Marrow Transplant 2005; 35: 835–857.

    Article  CAS  PubMed  Google Scholar 

  4. Peggs KS, Mackinnon S . Immune reconstitution following haematopoietic stem cell transplantation. Br J Hematol 2004; 124: 407–420.

    Article  Google Scholar 

  5. Dokhelar MC, Wiels J, Lipinski M, Tetaud C, Devergie A, Gluckman E et al. Natural killer cell activity in human bone marrow recipients: early reappearance of peripheral blood natural killer activity in graft versus host disease. Transplantation 1981; 31: 61–65.

    Article  CAS  PubMed  Google Scholar 

  6. Moretta A, Maccario R, Fagioli F, Giraldi E, Busca A, Montagna D et al. Analysis of immune reconstitution in children undergoing cord blood transplantation. Exp Hematol 2001; 29: 371–379.

    Article  CAS  PubMed  Google Scholar 

  7. Eyrich M, Lang P, Lal S, Bader P, Handgretinger R, Klingebiel T et al. A prospective analysis of the pattern of immune reconstitution in a paediatric cohort following transplantation of positively selected human leukocyte antigen-disparate haemopoietic stem cells from parental donors. Br J Haematol 2001; 114: 422–432.

    Article  CAS  PubMed  Google Scholar 

  8. Atkinson K . Reconstruction of the haemopoietic and immune system after marrow transplantation. Bone Marrow Transplant 1990; 5: 209–226.

    CAS  PubMed  Google Scholar 

  9. Storek J, Witherspoon RP, Storb R . T cell reconstitution after bone marrow transplantation into adult patients does not resemble T cell development in early life. Bone Marrow Transplant 1995; 16: 413–425.

    CAS  PubMed  Google Scholar 

  10. Bacigalupo A, Mingari MC, Moretta L, Podestà M, Van Lint MT, Piaggio G et al. Imbalance of T-cell subpopulations and defective pokeweed mitogen-induced B-cell differentiation after bone marrow transplantation in man. Clin Immunol Immunopathol 1981; 20: 137–145.

    Article  CAS  PubMed  Google Scholar 

  11. Barrett AJ, Rezvani K, Solomon S, Dickinson AM, Wang XN, Stark G et al. New developments in allotransplants immunology. Hematology 2003; 350: 71.

    Google Scholar 

  12. Noel DR, Witherspoon RB, Storb R, Atkinson K, Doney K, Mickelson EM et al. Does graft versus host disease influence the tempo of immunologic recovery after allogeneic human marrow transplantation? An observation on long-term survivors. Blood 1978; 51: 1087–1105.

    CAS  PubMed  Google Scholar 

  13. Paulin T, Ringden O, Nilsson B . Immunological recovery after bone marrow transplantation: role of age, graft versus host disease, prednisolone treatment and infections. Bone Marrow Transplant 1987; 1: 317–328.

    CAS  PubMed  Google Scholar 

  14. Seddik M, Seemayer TA, Lapp WS . The graft versus host reaction and immune function. T helper cell immunodeficiency associated with graft versus host induced thymic epithelial cell damage. Transplantation 1984; 37: 281–286.

    Article  CAS  PubMed  Google Scholar 

  15. Sao H, Kitaori K, Kato C, Adaki T, Yamanishi H, Morishima Y . Study of chronic graft versus host disease, infections and immune reconstitution in patient surviving more than one year bone marrow transplantation from unrelated donors. Rinsho Ketsueki 1999; 40: 630–638.

    CAS  PubMed  Google Scholar 

  16. Witherspoon RP, Storb R, Ochs HD, Fluomoy N, Kopecky KJ, Sullivan KM et al. Recovery of antibodies production in human allogeneic marrow graft recipients: influence of time after transplantation, the presence or absence of graft versus host disease, and antithymocyte globulin treatment. Blood 1981; 58: 360–368.

    CAS  PubMed  Google Scholar 

  17. Storek J, Saxon A . Reconstitution of B cell immunity after bone marrow transplantation. Bone marrow Transplant 1992; 9: 395–408.

    CAS  PubMed  Google Scholar 

  18. Dumont-Girard F, Roux E, van Lier RA, Hale G, Helg C, Chapuis B et al. Reconstitution of the T-cell compartment after bone marrow transplantation: restoration of the repertoire by thymic emigrants. Blood 1998; 92: 4464–4471.

    CAS  PubMed  Google Scholar 

  19. Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Eng J Med 1995; 332: 143–149.

    Article  CAS  Google Scholar 

  20. Roux E, Dumont-Girard F, Starobinski M, Siegrist CA, Helg C, Chapuis B et al. Recovery of immune reactivity after T-cell depleted bone marrow transplantation depends on thymic activity. Blood 2000; 96: 2299–2303.

    CAS  PubMed  Google Scholar 

  21. Douek DC, Vescio RA, Betts MR, Brenchley JM, Hill BJ, Zhang L et al. Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitution. Lancet 2000; 355: 1875–1881.

    Article  CAS  PubMed  Google Scholar 

  22. Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF et al. Change in thymic function with age and during the treatment of HIV infection. Nature 1998; 396: 690–695.

    Article  CAS  PubMed  Google Scholar 

  23. Przepiorka D, WeiMSDorf D, Martin P, Klingemann HG, Beatty P, Hows J et al. 1994 consensus conference on acute GVHD grading. Bone Marrow Transplant 1995; 15: 825–828.

    CAS  PubMed  Google Scholar 

  24. Ratanatharathorn V, Ayash L, Lazarus HM, Fu J, Uberti JP . Chronic graft-versus-host disease: clinical manifestation and therapy. Bone Marrow Transplant 2001; 28: 121–129.

    Article  CAS  PubMed  Google Scholar 

  25. Shulman HM, Sullivan KM, Weiden PL, McDonald GB, Striker GE, Sale GE et al. Chronic graft-versus-host syndrome in man: a long-term clinicopathologic study of 20 Seattle patients. Am J Med 1980; 69: 204–217.

    Article  CAS  PubMed  Google Scholar 

  26. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA et al. Clinical manifestation of graft versus host disease in human recipients of marrow from HLA-matched sibling donors. Transplantation 1974; 18: 295–304.

    Article  CAS  PubMed  Google Scholar 

  27. Sullivan KM, Shulman HM, Storb R, Weiden PL, Whiterspoon RP, McDonald GB et al. Chronic graft-versus-host disease in 52 patients: adverse natural course and successful treatment with combination immunosuppression. Blood 1981; 57: 267–276.

    CAS  PubMed  Google Scholar 

  28. Chen SC, Fine JP, Wei LJ . Prediction of cumulative incidence function under the proportional hazards model. Biometrics 1998; 54: 219–228.

    Article  Google Scholar 

  29. Korn EL, Dorey FJ . Application of crude incidence curves. Stat Med 1992; 11: 813–829.

    Article  CAS  PubMed  Google Scholar 

  30. Cox DR . Regression models and life-tables. J R Stat Soc 1992; 34: 187–195.

    Google Scholar 

  31. Dominietto A, Lamparelli T, Raiola AM, Van Lint MT, Gualandi F, Berisso G et al. Transplant related mortality and long-term graft function are significantly influenced by cell dose in patients undergoing allogeneic marrow transplantation. Blood 2002; 100: 3930–3934.

    Article  CAS  PubMed  Google Scholar 

  32. Dulude G, Roy DC, Perreault C . The effect of graft versus host disease on T cell production and homeostasis. J Exp Med 1999; 189: 1329–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rondelli D, Re F, Bandini G, Raspadori D, Arpinati M, Senese B et al. Different immune reconstitution in multiple myeloma, chronic myeloid leukemia and acute myeloid leukemia after allogeneic transplantation of peripheral blood stem cells. Bone Marrow Transplant 2000; 26: 1325–1331.

    Article  CAS  PubMed  Google Scholar 

  34. Fujimaki K, Maruta A, Yoshida M, Kadama F, Matsuzaki M, Fujisawa S et al. Immune reconstitution assessed during five years after allogeneic bone marrow transplantation. Bone Marrow Transplant 2001; 27: 1275–1281.

    Article  CAS  PubMed  Google Scholar 

  35. Van Lint MT, Uderzo C, Locasciulli A, Majolino I, Scimθ R, Locatelli F et al. Early treatment of acute graft versus host disease with high or low dose 6-methylprednisolone: a multicenter randomized trial from the Italian group for bone marrow transplantation. Blood 1998; 92: 2288–2293.

    CAS  PubMed  Google Scholar 

  36. Lin MT, Tseng LH, Frangoul H, Gooley T, Pei J, Barsoukov A et al. Increased apoptosis of peripheral blood T cells following allogeneic hematopoietic cell transplantation. Blood 2000; 95: 3832–3839.

    CAS  PubMed  Google Scholar 

  37. Pavletic ZS, Joshi SS, Pirruccello SJ, Tarantolo SR, Kollath J, Reed EC et al. Lymphocyte reconstitution after allogeneic blood stem cell transplantation for hematologic malignancies. Bone Marrow Transplant 1998; 21: 33–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Van Lint MT, Milone G, Leotta S, Uderzo C, Scime R, Dallorso S et al. Treatment of acute graft versus host disease with prednisolone: significant survival advantage for day +5 responders and no advantage for nonresponders receiving anti-thymocyte globulin. Blood 2006; 107: 4177–4181.

    Article  CAS  PubMed  Google Scholar 

  39. Fukushi N, Arase H, Wang B, Ogasawara K, Gotohda T, Good RA et al. Thymus: a direct target tissue in graft versus host reaction after allogeneic bone marrow transplantation that result in abrogation of induction of self-tolerance. Proc Natl Acad Sci USA 1990; 87: 6301–6305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Van den Brink MR, Moore E, Ferrara JL, Burakoff SJ . Graft versus host disease associated thymic damage result in the appearance of T cell clones with anti-host reactivity. Transplantation 2000; 69: 446–449.

    Article  CAS  PubMed  Google Scholar 

  41. Kim DH, Sohn SK, Won DI, Lee NY, Suh JS, Lee KB . Rapid helper T-cell recovery above 200 × 106/l at 3 months correlates to successful transplant outcomes after allogeneic stem cell transplantation. Bone Marrow Transplant 2006; 37: 1119–1128.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Associazione Italiana Ricerca contro il Cancro (AIRC) Milano grant to AB and Associazione Ricerca Trapianto Midollo Osseo (ARITMO) Genoa. The important contribution of our nursing staff is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, M., Figari, O., Bruno, B. et al. Lymphocyte subsets recovery following allogeneic bone marrow transplantation (BMT): CD4+ cell count and transplant-related mortality. Bone Marrow Transplant 41, 55–62 (2008). https://doi.org/10.1038/sj.bmt.1705870

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705870

Keywords

This article is cited by

Search

Quick links