Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pre-Clinical Studies

Retroviral vector insertions in T-lymphocytes used for suicide gene therapy occur in gene groups with specific molecular functions

Abstract

Graft-versus-host disease (GvHD) is a severe complication in the context of allogeneic stem cell transplantation and adoptive immunotherapy. The transfer of a suicide gene into donor T-lymphocytes (TLCs) allows selective elimination of GvHD-causing cells. As retroviral gene transfer into hematopoietic stem cells can induce leukaemia, there is an urgent need also to analyze retroviral integration sites in TLCs. We examined suicide gene-transduced TLCs in four grafts and from four transplanted patients. One-hundred and fifteen integration sites were detected in vitro. Of these 90 could be mapped to the human genome; 50% (45) were located in genes and 32% (29) were detected 10 kb upstream or downstream of transcription start sites. We found a significant overrepresentation of genes encoding for proteins with receptor activity, signal transducer activity, transcription regulator activity, nucleic acid binding activity and translation regulator activity. Similar data were obtained from patient samples. Our results point to preferred vector integration patterns, which are specific for the target cell population and probably independent of selection processes. Thus, future preclinical analysis of the integration repertoire with abundant amounts of transduced cells could allow a prediction also for the in vivo situation, where target cells are scarce.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Heslop HE, Ng CY, Li C, Smith CA, Loftin SK, Krance RA et al. Long-term restoration of immunity against Epstein–Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med 1996; 2: 551–555.

    Article  CAS  PubMed  Google Scholar 

  2. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for blood and marrow transplantation working party chronic leukemia. Blood 1995; 86: 2041–2050.

    CAS  PubMed  Google Scholar 

  3. Kernan NA, Bartsch G, Ash RC, Beatty PG, Champlin R, Filipovich A et al. Analysis of 462 transplantations from unrelated donors facilitated by the national marrow donor program. N Engl J Med 1993; 328: 593–602.

    Article  CAS  PubMed  Google Scholar 

  4. Tiberghien P, Reynolds CW, Keller J, Spence S, Deschaseaux M, Certoux JM et al. Ganciclovir treatment of herpes simplex thymidine kinase-transduced primary T lymphocytes: an approach for specific in vivo donor T-cell depletion after bone marrow transplantation? Blood 1994; 84: 1333–1341.

    CAS  PubMed  Google Scholar 

  5. Bordignon C, Bonini C, Verzeletti S, Nobili N, Maggioni D, Traversari C et al. Transfer of the HSV-TK gene into donor peripheral blood lymphocytes for in vivo modulation of donor anti-tumor immunity after allogeneic bone marrow transplantation. Hum Gene Ther 1995; 6: 813–819.

    Article  CAS  PubMed  Google Scholar 

  6. Tiberghien P, Cahn JY, Brion A, Deconinck E, Racadot E, Herve P et al. Use of donor T-lymphocytes expressing herpes-simplex thymidine kinase in allogeneic bone marrow transplantation: a phase I–II study. Hum Gene Ther 1997; 8: 615–624.

    Article  CAS  PubMed  Google Scholar 

  7. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997; 276: 1719–1724.

    Article  CAS  PubMed  Google Scholar 

  8. Li Z, Dullmann J, Schiedlmeier B, Schmidt M, Von Kalle C, Meyer J et al. Murine leukemia induced by retroviral gene marking. Science 2002; 296: 497.

    Article  CAS  PubMed  Google Scholar 

  9. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256.

    Article  PubMed  Google Scholar 

  10. Recchia A, Bonini C, Magnani Z, Urbinati F, Sartori D, Muraro S et al. Retroviral vector integration deregulates gene expression but has no consequence on the biology and function of transplanted T cells. Proc Natl Acad Sci USA 2006; 103: 1457–1462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Giordano FA, Hotz-Wagenblatt A, Lauterborn D, Appelt J-U, Fellenberg K, Nagy KZ et al. New bioinformatic strategies to rapidly characterize retroviral integration sites (submitted).

  12. Jonnakuty S, del Val C, Glatting KH, Suhai S . ExpressMiner: a tool for mining the gene expression data from microarray experiments. 12th International Conference on Intelligent Systems for Molecular Biology (ISMB 2004) and third European Conference on Computational Biology (ECCB 2004), Glasgow, Scotland, UK.

  13. Frank O, Rudolph C, Heberlein C, von Neuhoff N, Schrock E, Schambach A et al. Tumor cells escape suicide gene therapy by genetic and epigenetic instability. Blood 2004; 104: 3543–3549.

    Article  CAS  PubMed  Google Scholar 

  14. Kuhlcke K, Ayuk FA, Li Z, Lindemann C, Schilz A, Schade UM et al. Retroviral transduction of T lymphocytes for suicide gene therapy in allogeneic stem cell transplantation. Bone Marrow Transplant 2000; 25: S96–S98.

    Article  PubMed  Google Scholar 

  15. Fehse B, Ayuk FA, Kroger N, Fang L, Kuhlcke K, Heinzelmann M et al. Evidence for increased risk of secondary graft failure after in vivo depletion of suicide gene-modified T lymphocytes transplanted in conjunction with CD34+-enriched blood stem cells. Blood 2004; 104: 3408–3409.

    Article  CAS  PubMed  Google Scholar 

  16. Laufs S, Gentner B, Nagy KZ, Jauch A, Benner A, Naundorf S et al. Retroviral vector integration occurs in preferred genomic targets of human bone marrow-repopulating cells. Blood 2003; 101: 2191–2198.

    Article  CAS  PubMed  Google Scholar 

  17. Burge C, Karlin S . Prediction of complete gene structures in human genomic DNA. J Mol Biol 1997; 268: 78–94.

    Article  CAS  PubMed  Google Scholar 

  18. Pruitt KD, Maglott DR . RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res 2001; 29: 137–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schuler GD . Pieces of the puzzle: expressed sequence tags and the catalog of human genes. J Mol Med 1997; 75: 694–698.

    Article  CAS  PubMed  Google Scholar 

  20. Bairoch A, Apweiler R . The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 2000; 28: 45–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kanehisa M, Goto S . KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28: 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuehlcke K, Naundorf S, Laufs S, Fauser AA, Fruehauf S . Optimising retroviral-mediated gene transfer into hematopoietic stem cells under clinically relevant conditions. Blood 2002; 100: 484B–485B.

    Google Scholar 

  24. De Palma M, Montini E, Santoni de Sio FR, Benedicenti F, Gentile A, Medico E et al. Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells. Blood 2004; 105: 2307–2315.

    Article  PubMed  Google Scholar 

  25. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F . HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110: 521–529.

    Article  CAS  PubMed  Google Scholar 

  26. Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2004; 2: E234.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu XL, Li Y, Crise B, Burgess SM . Transcription start regions in the human genome are favored targets for MLV integration. Science 2003; 300: 1749–1751.

    Article  CAS  PubMed  Google Scholar 

  28. Laufs S, Nagy KZ, Giordano F, Hotz-Wagenblatt A, Zeller WJ, Fruehauf S . Insertion of retroviral vectors in NOD/SCID repopulating human peripheral blood progenitor cells occurs preferentially in the vicinity of transcription start regions and in introns. Mol Ther 2004; 10: 874–881.

    Article  CAS  PubMed  Google Scholar 

  29. Gentner B, Laufs S, Nagy KZ, Zeller WJ, Fruehauf S . Rapid detection of retroviral vector integration sites in colony-forming human peripheral blood progenitor cells using PCR with arbitrary primers. Gene Therapy 2003; 10: 789–794.

    Article  CAS  PubMed  Google Scholar 

  30. Nagy KZ, Laufs S, Gentner B, Naundorf S, Kuehlcke K, Topaly J et al. Clonal analysis of individual marrow-repopulating cells after experimental peripheral blood progenitor cell transplantation. Stem Cells 2004; 22: 570–579.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledged the excellent technical assistance of Sigrid Heil, Bernhard Berkus and Hans-Jürgen Engel. We thank Axel Benner from the Central Unit Biostatistics of the German Cancer Research Center for statistical support.

This work was supported by Grant M 20.4 of the HW & J Hector Foundation and by Grant FR 1732/3-1 of the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Fruehauf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giordano, F., Fehse, B., Hotz-Wagenblatt, A. et al. Retroviral vector insertions in T-lymphocytes used for suicide gene therapy occur in gene groups with specific molecular functions. Bone Marrow Transplant 38, 229–235 (2006). https://doi.org/10.1038/sj.bmt.1705424

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705424

Keywords

This article is cited by

Search

Quick links