Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Post-Transplant Events

G-CSF increases the number of peripheral blood dendritic cells CD16+ and modifies the expression of the costimulatory molecule CD86+

Abstract

Dendritic cells (DC) play a key role in initiating immune reactions after allogeneic stem cell transplantation. The two main peripheral blood DC populations are myeloid (DC1) and lymphoplasmacytoid (DC2). A new subset of myeloid DC, expressing CD16, has been identified. We analyzed the number and CD86 expression of DC subsets in peripheral blood of 18 healthy donors, before and after granulocyte colony-stimulating factor (G-CSF) and in the inoculum of allogeneic peripheral blood transplants (allo-PBT; n=100) and allogeneic bone marrow transplants (allo-BMT; n=22). Granulocyte colony-stimulating factor administration increased the median number of DC1 (P=0.0007), of DC2 (P<0.0001) and of DC CD16+ (P=0.0001). Granulocyte colony-stimulating factor administration was also associated with a significant decrease of CD86 expression on DC1 (P=0.0003) and with a trend for an increase on DC CD16+ (P=0.07). Recipients of allo-PBT received similar quantities of DC1 and higher doses of DC2 and DC CD16+ than recipients of allo-BMT (P=0.5; P=0.0001; P<0.0001, respectively). Granulocyte colony-stimulating factor modifies the number of DC in peripheral blood and the expression of the costimulatory molecule CD86. This resulted in a different composition of DC2 and especially of DC CD16+ in the harvests, which might explain some of the differences observed in allogeneic reactions after allo-PBT with respect to allo-BMT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gratwohl A, Baldomero H, Passweg J, Frassoni F, Niederwieser D, Schmitz N, et al., Accreditation Committee of the European Group for Blood and Marrow Transplantation (EBMT); Working Parties Acute (ALWP) Chronic Leukemia (CLWP); Lymphoma Working Party. Hematopoietic stem cell transplantation for hematological malignancies in Europe. Leukemia 2003; 17: 941–959.

    Article  CAS  PubMed  Google Scholar 

  2. Bensinger WI, Martin PJ, Storer B, Clift R, Forman SJ, Negrin R et al. Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 2001; 344: 175–181.

    Article  CAS  PubMed  Google Scholar 

  3. Champlin RE, Schmitz N, Horowitz MM, Champlin RE, Schmitz N, Horowitz MM et al. Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation. Blood 2000; 95: 3702–3709.

    CAS  PubMed  Google Scholar 

  4. Pavletic ZS, Bishop MR, Tarantolo SR, Martin-Algarra S, Bierman PJ, Vose JM et al. Hematopoietic recovery after allogeneic blood stem-cell transplantation compared with bone marrow transplantation in patients with hematologic malignancies. J Clin Oncol 1997; 15: 1608–1616.

    Article  CAS  PubMed  Google Scholar 

  5. Schmitz N, Bacigalupo A, Hasenclever D, Nagler A, Gluckman E, Clark P et al. Allogeneic bone marrow transplantation vs filgrastim-mobilised peripheral blood progenitor cell transplantation in patients with early leukaemia: first results of a randomised multicentre trial of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 1998; 21: 995–1003.

    Article  CAS  PubMed  Google Scholar 

  6. Flowers ME, Parker PM, Johnston LJ, Matos AV, Storer B, Bensinger WI et al. Comparison of chronic graft-versus-host disease after transplantation of peripheral blood stem cells versus bone marrow in allogeneic recipients: long-term follow-up of a randomized trial. Blood 2002; 100: 415–419.

    Article  CAS  PubMed  Google Scholar 

  7. Mohty M, Bilger K, Jourdan E, Kuentz M, Michallet M, Bourhis JH et al. Higher doses of CD34+ peripheral blood stem cells are associated with increased mortality from chronic graft-versus-host disease after allogeneic HLA-identical sibling transplantation. Leukemia 2003; 17: 869–875.

    Article  CAS  PubMed  Google Scholar 

  8. Cutler C, Giri S, Jeyapalan S, Paniagua D, Viswanathan A, Antin JH . Acute and chronic graft-versus-host disease after allogeneic peripheral-blood stem-cell and bone marrow transplantation: a meta-analysis. J Clin Oncol 2001; 19: 3685–3691.

    Article  CAS  PubMed  Google Scholar 

  9. Solano C, Martinez C, Brunet S, Tomas JF, Urbano-Ispizua A, Zuazu J et al. Chronic graft-versus-host disease after allogeneic peripheral blood progenitor cell or bone marrow transplantation from matched related donors. A case–control study. Spanish Group of Allo-PBT. Bone Marrow Transplant 1998; 22: 1129–1135.

    Article  CAS  PubMed  Google Scholar 

  10. Urbano-Ispizua A, Garcia-Conde J, Brunet S, Hernandez F, Sanz G, Petit J et al. High incidence of chronic graft versus host disease after allogeneic peripheral blood progenitor cell transplantation. The Spanish Group of Allo-PBPCT. Haematologica 1997; 82: 683–689.

    CAS  PubMed  Google Scholar 

  11. Couban S, Simpson DR, Barnett MJ, Bredeson C, Hubesch L, Howson-Jan K, et al., Canadian Bone Marrow Transplant Group. A randomized multicenter comparison of bone marrow and peripheral blood in recipients of matched sibling allogeneic transplants for myeloid malignancies. Blood 2002; 100: 1525–1531.

    Article  CAS  PubMed  Google Scholar 

  12. Dreger P, Haferlach T, Eckstein V, Jacobs S, Suttorp M, Loffler H et al. G-CSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: safety, kinetics of mobilization, and composition of the graft. Br J Haematol 1994; 87: 609–613.

    Article  CAS  PubMed  Google Scholar 

  13. Favre G, Beksac M, Bacigalupo A, Ruutu T, Nagler A, Gluckman E, et al., European Group for Blood and Marrow Transplantation (EBMT). Differences between graft product and donor side effects following bone marrow or stem cell donation. Bone Marrow Transplant 2003; 32: 873–880.

    Article  CAS  PubMed  Google Scholar 

  14. Perez-Simon JA, Diez-Campelo M, Martino R, Sureda A, Caballero D, Canizo C et al. Impact of CD34+ cell dose on the outcome of patients undergoing reduced-intensity-conditioning allogeneic peripheral blood stem cell transplantation. Blood 2003; 102: 1108–1113.

    Article  CAS  PubMed  Google Scholar 

  15. Zaucha JM, Gooley T, Bensinger WI, Heimfeld S, Chauncey TR, Zaucha R et al. CD34 cell dose in granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cell grafts affects engraftment kinetics and development of extensive chronic graft-versus-host disease after human leukocyte antigen-identical sibling transplantation. Blood 2001; 98: 3221–3227.

    Article  CAS  PubMed  Google Scholar 

  16. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  PubMed  Google Scholar 

  17. Hart DN . Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 1997; 90: 3245–3287.

    CAS  PubMed  Google Scholar 

  18. MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN . Characterization of human blood dendritic cell subsets. Blood 2002; 100: 4512–4520.

    Article  CAS  PubMed  Google Scholar 

  19. Steinman RM . The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9: 271–296.

    Article  CAS  PubMed  Google Scholar 

  20. Clark FJ, Chakraverty R . Role of dendritic cells in graft-versus-host disease. J Hematother Stem Cell Res 2002; 11: 601–616.

    Article  PubMed  Google Scholar 

  21. Clark FJ, Freeman L, Dzionek A, Schmitz J, McMullan D, Simpson P et al. Origin and subset distribution of peripheral blood dendritic cells in patients with chronic graft-versus-host disease. Transplantation 2003; 75: 221–225.

    Article  PubMed  Google Scholar 

  22. Shlomchik WD, Couzens MS, Tang CB, McNiff J, Robert ME, Liu J et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 1999; 285: 412–415.

    Article  CAS  PubMed  Google Scholar 

  23. Waller EK, Rosenthal H, Jones TW, Peel J, Lonial S, Langston A et al. Larger numbers of CD4 (bright) dendritic cells in donor bone marrow are associated with increased relapse after allogeneic bone marrow transplantation. Blood 2001; 97: 2948–2956.

    Article  CAS  PubMed  Google Scholar 

  24. Waller EK, Rosenthal H, Sagar L . DC2 effect on survival following allogeneic bone marrow transplantation. Oncology (Huntington) 2002; 16 (Suppl 1): 19–26.

    Google Scholar 

  25. Fagnoni FF, Oliviero B, Zibera C, Gibelli N, Lozza L, Vescovini R et al. Circulating CD33+ large mononuclear cells contain three distinct populations with phenotype of putative antigen-presenting cells including myeloid dendritic cells and CD14+ monocytes with their CD16+ subset. Cytometry 2001; 45: 124–132.

    Article  CAS  PubMed  Google Scholar 

  26. Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ . The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 1997; 185: 1101–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kohrgruber N, Halanek N, Groger M, Winter D, Rappersberger K, Schmitt-Egenolf M et al. Survival, maturation, and function of CD11c− and CD11c+ peripheral blood dendritic cells are differentially regulated by cytokines. J Immunol 1999; 163: 3250–3259.

    CAS  PubMed  Google Scholar 

  28. Robinson SP, Patterson S, English N, Davies D, Knight SC, Reid CD . Human peripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol 1999; 29: 2769–2778.

    Article  CAS  PubMed  Google Scholar 

  29. Schakel K, Mayer E, Federle C, Schmitz M, Riethmuller G, Rieber EP . A novel dendritic cell population in human blood: one-step immunomagnetic isolation by a specific mAb (M-DC8) and in vitro priming of cytotoxic T lymphocytes. Eur J Immunol 1998; 28: 4084–4093.

    Article  CAS  PubMed  Google Scholar 

  30. Almeida J, Bueno C, Alguero MC, Sanchez ML, de Santiago M, Escribano L et al. Comparative analysis of the morphological, cytochemical, immunophenotypical, and functional characteristics of normal human peripheral blood lineage(−)/CD16(+)/HLA-DR(+)/CD14(−/lo) cells, CD14(+) monocytes, and CD16(−) dendritic cells. Clin Immunol 2001; 100: 325–338.

    Article  CAS  PubMed  Google Scholar 

  31. Arpinati M, Green CL, Heimfeld S, Heuser JE, Anasetti C . Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 2000; 95: 2484–2490.

    CAS  PubMed  Google Scholar 

  32. Klangsinsirikul P, Russell NH . Peripheral blood stem cell harvests from G-CSF-stimulated donors contain a skewed Th2 CD4 phenotype and a predominance of type 2 dendritic cells. Exp Hematol 2002; 30: 495–501.

    Article  CAS  PubMed  Google Scholar 

  33. Pulendran B, Banchereau J, Burkeholder S, Kraus E, Guinet E, Chalouni C et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol 2000; 165: 566–572.

    Article  CAS  PubMed  Google Scholar 

  34. Ratta M, Rondelli D, Fortuna A, Curti A, Fogli M, Fagnoni F et al. Generation and functional characterization of human dendritic cells derived from CD34 cells mobilized into peripheral blood: comparison with bone marrow CD34+ cells. Br J Haematol 1998; 101: 756–765.

    Article  CAS  PubMed  Google Scholar 

  35. Pan L, Delmonte Jr J, Jalonen CK, Ferrara JL . Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. Blood 1995; 86: 4422–4429.

    CAS  PubMed  Google Scholar 

  36. Schmitz M, Zhao S, Deuse Y, Schakel K, Wehner R, Wohner H et al. Tumoricidal potential of native blood dendritic cells: direct tumor cell killing and activation of NK cell-mediated cytotoxicity. J Immunol 2005; 174: 4127–4134.

    Article  CAS  PubMed  Google Scholar 

  37. Mende I, Hoffmann P, Wolf A, Lutterbuse R, Kopp E, Baeuerle PA et al. Highly efficient antigen targeting to M-DC8+ dendritic cells via FcγRIII/CD16-specific antibody conjugates. Int Immunol 2005; 17: 539–547.

    Article  CAS  PubMed  Google Scholar 

  38. Schakel K, Kannagi R, Kniep B, Goto Y, Mitsuoka C, Zwirner J et al. 6-Sulfo LacNAc, a novel carbohydrate modification of PSGL-1, defines an inflammatory type of human dendritic cells. Immunity 2002; 17: 289–301.

    Article  CAS  PubMed  Google Scholar 

  39. de Baey A, Mende I, Baretton G, Greiner A, Hartl WH, Baeuerle PA et al. A subset of human dendritic cells in the T cell area of mucosa-associated lymphoid tissue with a high potential to produce TNFα. J Immunol 2003; 170: 5089–5094.

    Article  CAS  PubMed  Google Scholar 

  40. Fagnoni FF, Oliviero B, Giorgiani G, De Stefano P, Deho A, Zibera C et al. Reconstitution dynamics of plasmacytoid and myeloid dendritic cell precursors after allogeneic myeloablative hematopoietic stem cell transplantation. Blood 2004; 104: 281–289.

    Article  CAS  PubMed  Google Scholar 

  41. Guinan EC, Gribben JG, Boussiotis VA, Freeman GJ, Nadler LM . Pivotal role of the B7:CD28 pathway in transplantation tolerance and tumor immunity. Blood 1994; 84: 3261–3282.

    CAS  PubMed  Google Scholar 

  42. Sayegh MH, Turka LA . The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med 1998; 338: 1813–1821.

    Article  CAS  PubMed  Google Scholar 

  43. Azuma M, Cayabyab M, Buck D, Phillips JH, Lanier LL . CD28 interaction with B7 costimulates primary allogeneic proliferative responses and cytotoxicity mediated by small, resting T lymphocytes. J Exp Med 1992; 175: 353–360.

    Article  CAS  PubMed  Google Scholar 

  44. Dilioglou S, Cruse JM, Lewis RE . Function of CD80 and CD86 on monocyte- and stem cell-derived dendritic cells. Exp Mol Pathol 2003; 75: 217–227.

    Article  CAS  PubMed  Google Scholar 

  45. Jin Y, Fuller L, Ciancio G, Burke III GW, Tzakis AG, Ricordi C et al. Antigen presentation and immune regulatory capacity of immature and mature-enriched antigen presenting (dendritic) cells derived from human bone marrow. Hum Immunol 2004; 65: 93–103.

    Article  CAS  PubMed  Google Scholar 

  46. Lu P, Wang YL, Linsley PS . Regulation of self-tolerance by CD80/CD86 interactions. Curr Opin Immunol 1997; 9: 858–862.

    Article  CAS  PubMed  Google Scholar 

  47. Manickasingham SP, Anderton SM, Burkhart C, Wraith DC . Qualitative and quantitative effects of CD28/B7-mediated costimulation on naive T cells in vitro. J Immunol 1998; 161: 3827–3835.

    CAS  PubMed  Google Scholar 

  48. Saito K, Yagita H, Hashimoto H, Okumura K, Azuma M . Effect of CD80 and CD86 blockade and anti-interleukin-12 treatment on mouse acute graft-versus-host disease. Eur J Immunol 1996; 26: 3098–3106.

    Article  CAS  PubMed  Google Scholar 

  49. Zeng D, Dejbakhsh-Jones S, Strober S . Granulocyte colony-stimulating factor reduces the capacity of blood mononuclear cells to induce graft-versus-host disease: impact on blood progenitor cell transplantation. Blood 1997; 90: 453–463.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants from Fondo de Investigaciones Sanitarias de la Seguridad Social (FIS-02/0350), the José Carreras International Leukaemia Foundation (EM/p-03 and CR/p-03) and Red Temática del Cáncer, Instituto de Salud Carlos III, No. C03/10.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Talarn or A Urbano-Ispizua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talarn, C., Urbano-Ispizua, A., Martino, R. et al. G-CSF increases the number of peripheral blood dendritic cells CD16+ and modifies the expression of the costimulatory molecule CD86+. Bone Marrow Transplant 37, 873–879 (2006). https://doi.org/10.1038/sj.bmt.1705345

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705345

Keywords

This article is cited by

Search

Quick links