Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Radioimmunoconjugates in acute leukemia treatment: the future is radiant

Summary:

Targeted radiotherapy of the bone marrow using radiolabeled monoclonal antibodies is a therapeutic approach of considerable potential for the treatment of acute leukemia in addition to or as a substitute for total body irradiation. The data currently available, of about 300 patients, suggest that radioimmunotherapy (RIT) with β-emitters in acute leukemia is feasible and safe using a variety of antibodies (anti-CD33, anti-CD45, anti-CD66) and radionuclides (131I, 90Y, 188Re). It appears to reduce the risk of relapse in high-risk acute myelogenous leukemia (AML) patients transplanted early in the course of their disease (<15% blasts) to 20–30%. Furthermore, it has shown the potential to safely intensify reduced-intensity conditioning regimens (nonrelapse mortality of 25% compared to relapse rate of 55% within 2 years). Significant improvements in the results of refractory patients will probably depend on the successful further development of RIT with α-emitters or the use of a cocktail of antibodies labeled with α- and β-emitters, in a first dose escalation study of 213Bi-labeled anti-CD33 in refractory AML (partial) remission could be achieved in 5/18 patients. Randomized trials to evaluate the therapeutic efficacy of RIT in the context of stem cell transplantation have been initiated and the results are keenly anticipated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Appelbaum F . Allogeneic hematopoietic stem cell transplantation for acute leukemia. Sem Oncol 1997; 24: 114–123.

    CAS  Google Scholar 

  2. Barrett A, Horowitz M, Ash R et al. Bone marrow transplantation for Philadelphia-chromosome-positive acute lymphoblastic leukemia. Blood 1992; 79: 3067–3070.

    CAS  PubMed  Google Scholar 

  3. Clift RA, Buckner CD, Appelbaum FR et al. Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: a randomized trial of two irradiation regimens [see comments]. Blood 1990; 76: 1867–1871.

    CAS  PubMed  Google Scholar 

  4. Clift RA, Buckner CD, Appelbaum FR et al. Allogeneic marrow transplantation in patients with chronic myeloid leukemia in the chronic phase: a randomized trial of two irradiation regimens. Blood 1991; 77: 1660–1665.

    CAS  PubMed  Google Scholar 

  5. Corcoran M, Press O, Matthews D et al. The role of radioimmunotherapy in bone marrow transplantation. Curr Opin Haematol 1996; 3: 438–445.

    Article  CAS  Google Scholar 

  6. Mulford DA, Jurcic JG . Antibody-based treatment of acute myeloid leukaemia. Expert Opin Biol Ther 2004; 4: 95–105.

    Article  CAS  PubMed  Google Scholar 

  7. Griffiths GL, Goldenberg DM, Knapp Jr FF et al. Direct radiolabeling of monoclonal antibodies with generator-produced rhenium-188 for radioimmunotherapy: labeling and animal biodistribution studies. Cancer Res 1991; 51: 4594–4602.

    CAS  PubMed  Google Scholar 

  8. Kotzerke J, Glatting G, Seitz U et al. Radioimmunotherapy for the intensification of conditioning before stem cell transplantation: differences in dosimetry and biokinetics of 188Re- and 99mTc-labeled anti-NCA-95 MAbs. J Nucl Med 2000; 41: 531–537.

    CAS  PubMed  Google Scholar 

  9. Grossbard M, Press O, Appelbaum F et al. Monoclonal antibody-based therapies of leukemia and lymphoma. Blood 1992; 80: 863–878.

    CAS  PubMed  Google Scholar 

  10. Burke JM, Caron PC, Papadopoulos EB et al. Cytoreduction with iodine-131-anti-CD33 antibodies before bone marrow transplantation for advanced myeloid leukemias. Bone Marrow Transplant 2003; 32: 549–556.

    Article  CAS  PubMed  Google Scholar 

  11. Jurcic JG, Larson SM, Sgouros G et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood 2002; 100: 1233–1239.

    CAS  PubMed  Google Scholar 

  12. Matthews DC, Appelbaum FR, Eary JF et al. Development of a marrow transplant regimen for acute leukemia using targeted hematopoietic irradiation delivered by 131I-labeled anti-CD45 antibody, combined with cyclophosphamide and total body irradiation. Blood 1995; 85: 1122–1131.

    CAS  PubMed  Google Scholar 

  13. Bunjes D, Buchmann I, Duncker C et al. Rhenium 188-labeled anti-CD 66 (a, b, c, e) monoclonal antibody to intensify the conditioning regimen prior to stem cell transplantation for patients with high-risk acute myeloid leukemia or myelodysplastic syndrome: results of a phase I–II study. Blood 2001; 98: 565–572.

    Article  CAS  PubMed  Google Scholar 

  14. Reske S, Bunjes D, Buchmann I et al. Targeted bone marrow irradiation in the conditioning of high-risk leukemia prior to stem cell transplantation. Eur J Nucl Med 2001; 28: 807–815.

    Article  CAS  PubMed  Google Scholar 

  15. Bordessoule D, Jones M, Gatter KC, Mason DY . Immunohistological patterns of myeloid antigens: tissue distribution of CD13, CD14, CD16, CD31, CD36, CD65, CD66 and CD67. Br J Haematol 1993; 83: 370–383.

    Article  CAS  PubMed  Google Scholar 

  16. Burke JM, Jurcic JG, Scheinberg DA . Radioimmunotherapy for acute leukemia. Cancer Control 2002; 9: 106–113.

    Article  PubMed  Google Scholar 

  17. Pagel JM, Matthews DC, Appelbaum FR et al. The use of radioimmunoconjugates in stem cell transplantation. Bone Marrow Transplant 2002; 29: 807–816.

    Article  CAS  PubMed  Google Scholar 

  18. Goldenberg DM, Gaffar SA, Bennett SJ et al. Experimental radioimmunotherapy of a xenografted human colonic tumor (GW-39) producing carcinoembryonic antigen. Cancer Res 1981; 41: 4354–4360.

    CAS  PubMed  Google Scholar 

  19. Appelbaum FR, Matthews DC, Eary JF et al. The use of radiolabeled anti-CD33 antibody to augment marrow irradiation prior to marrow transplantation for acute myelogenous leukemia. Transplantation 1992; 54: 829–833.

    Article  CAS  PubMed  Google Scholar 

  20. Scheinberg DA, Lovett D, Divgi CR et al. A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide. J Clin Oncol 1991; 9: 478–490.

    Article  CAS  PubMed  Google Scholar 

  21. Matthews DC, Appelbaum FR, Eary JF et al. Phase I study of (131)I-anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood 1999; 94: 1237–1247.

    CAS  PubMed  Google Scholar 

  22. Vaidyanathan G, Zalutsky MR . Protein radiohalogenation: observations on the design of N-succinimidyl ester acylation agents. Bioconjug Chem 1990; 1: 269–273.

    Article  CAS  PubMed  Google Scholar 

  23. Schubiger PA, Hasler PH, Novak Hofer I, Blauenstein P . Assessment of the binding properties of Granuloszint. Eur J Nucl Med 1989; 15: 605–608.

    Article  CAS  PubMed  Google Scholar 

  24. Seitz U, Neumaier B, Glatting G et al. Preparation and evaluation of the rhenium-188-labelled anti-NCA antigen monoclonal antibody BW 250/183 for radioimmunotherapy of leukaemia. Eur J Nucl Med 1999; 26: 1265–1273.

    Article  CAS  PubMed  Google Scholar 

  25. Siegel JA, Thomas SR, Stubbs JB et al. MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 1999; 40: 37S–61S.

    CAS  PubMed  Google Scholar 

  26. Stabin MG . MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 1996; 37: 538–546.

    CAS  PubMed  Google Scholar 

  27. Forster GJ, Engelbach MJ, Brockmann JJ et al. Preliminary data on biodistribution and dosimetry for therapy planning of somatostatin receptor positive tumours: comparison of (86)Y-DOTATOC and (111)In-DTPA-octreotide. Eur J Nucl Med 2001; 28: 1743–1750.

    Article  CAS  PubMed  Google Scholar 

  28. Friesen C, Leubatschofski A, Kotzerke J et al. Beta-irradiation used for systemic radiommunotherapy induces apotosis and activates apoptosis pathways in leukaemia cells. Eur J Nucl Med Mol Imaging 2003; 30: 1251–1261.

    Article  CAS  PubMed  Google Scholar 

  29. Bunjes D . 188Re-labeled anti-CD66 monoclonal antibody in stem cell transplantation for patients with high-risk acute myeloid leukemia. Leukemia Lymphoma 2002; 43: 2125–2131.

    Article  CAS  PubMed  Google Scholar 

  30. McSweeney PA, Niederwieser D, Shizuru JA et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood 2001; 97: 3390–3400.

    Article  CAS  PubMed  Google Scholar 

  31. Niederwieser D, Maris M, Shizuru JA et al. Low-dose total body irradiation (TBI) and fludarabine followed by hematopoietic cell transplantation (HCT) from HLA-matched or mismatched unrelated donors and postgrafting immunosuppression with cyclosporine and mycophenolate mofetil (MMF) can induce durable complete chimerism and sustained remissions in patients with hematological diseases. Blood 2003; 101: 1620–1629.

    Article  CAS  PubMed  Google Scholar 

  32. Jurcic J, Larson S, Sgouros G et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood 2002; 100: 1233–1239.

    CAS  PubMed  Google Scholar 

  33. McDevitt M, Ma D, Lai L et al. Tumor therapy with targeted atomic nanogenerators. Science 2001; 294: 1537–1540.

    Article  CAS  PubMed  Google Scholar 

  34. Ringhoffer M, Wiesneth M, Von Harsdorf S et al. CD34+ cell selection of peripheral blood progenitor cells using the CliniMACS device for allogeneic transplantation: Clinical results in 102 patients. Br J Haematol 2004; 126: 527–535.

    Article  PubMed  Google Scholar 

  35. Hale G, Jacobs P, Wood L et al. CD52 antibodies for prevention of graft-versus-host disease and graft rejection following transplantation of allogeneic peripheral blood stem cells. Bone Marrow Transplant 2000; 26: 69–76.

    Article  CAS  PubMed  Google Scholar 

  36. Kottaridis P, Milligan D, Chopra R et al. In vivo CAMPATH-1H prevents graft-versus-host disease following nonmyeloablative stem cell transplantation. Blood 2000; 96: 2419–2425.

    CAS  PubMed  Google Scholar 

  37. Ringhoffer M, Blumstein N, Neumaier B et al. Re-188 or Y-90 labeled anti-CD66 antibody as part of a dose-reduced conditioning regimen for patients acute leukaemia or myelodysplastic syndrome over the age of 55: results of a phae I–II study. Br J Haematol 2005; 130: 604–613.

    Article  CAS  PubMed  Google Scholar 

  38. Pagel JM, Hedin N, Subbiah K et al. Comparison of anti-CD20 and anti-CD45 antibodies for conventional and pretargeted radioimmunotherapy of B-cell lymphomas. Blood 2003; 101: 2340–2348.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the German José Carreras Leukemia Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Kotzerke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotzerke, J., Bunjes, D. & Scheinberg, D. Radioimmunoconjugates in acute leukemia treatment: the future is radiant. Bone Marrow Transplant 36, 1021–1026 (2005). https://doi.org/10.1038/sj.bmt.1705182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705182

Keywords

This article is cited by

Search

Quick links