Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Autografting

Predictive factors for hematopoietic engraftment after autologous peripheral blood stem cell transplantation for AL amyloidosis

A Corrigendum to this article was published on 09 March 2005

Summary:

Treatment of patients with AL amyloidosis with high-dose melphalan and autologous peripheral blood stem cells (PBSC) produces hematologic remissions in approximately 40% of evaluable patients, accompanied by improvements in organ disease and quality of life. These patients, who frequently have amyloid deposits in bone marrow blood vessels and interstitium and impaired function of kidneys, liver, spleen, and heart, represent an unusual population for stem cell transplantation, with unique problems. To identify factors influencing engraftment rates after chemotherapy and autologous granulocyte colony-stimulating factor (G-CSF)-mobilized PBSC reinfusion, we studied a group of 225 patients. The median time to neutrophil engraftment was 10 days (range, 8–17 days). In a multivariate analysis, the factors positively affecting the rate of neutrophil engraftment were CD34+ stem cell dose, female gender, and minimal prior alkylator therapy. The median time to platelet engraftment was 13 days (range, 7–52 days). Factors positively affecting platelet engraftment, in addition to CD34+ cell dose, included preserved renal function and the absence of neutropenic fever. The conditioning dose of intravenous melphalan was not found to be an independent predictive factor for hematopoietic recovery. Thus, in this patient population, organ function and host and hematopoietic factors influence engraftment after PBSC rescue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Goldman J . Peripheral blood stem cells for allografting. Blood 1995; 85: 1413–1415.

    CAS  PubMed  Google Scholar 

  2. Korbling M, Champlin R . Peripheral blood progenitor cell transplantation: a replacement for marrow auto- or allografts. Stem Cells 1996; 14: 185–195.

    Article  CAS  PubMed  Google Scholar 

  3. Faucher C, Le Corroller AG, Chabannon C et al. Autologous transplantation of blood stem cells mobilized with filgrastim alone in 93 patients with malignancies: the number of CD34+ cells reinfused is the only factor predicting both granulocyte and platelet recovery. J Hematother 1996; 5: 663–670.

    Article  CAS  PubMed  Google Scholar 

  4. Haas R, Mohle R, Fruhauf S et al. Patient characteristics associated with successful mobilizing and autografting of peripheral blood progenitor cells in malignant lymphoma. Blood 1994; 83: 3787–3794.

    CAS  PubMed  Google Scholar 

  5. Skinner M, Sanchorawala V, Seldin DC et al. High-dose melphalan and autologous stem-cell transplantation in patients with AL amyloidosis: an 8-year study. Ann Intern Med 2004; 140: 85–93.

    Article  CAS  PubMed  Google Scholar 

  6. Gertz MA, Lacy MQ, Dispenzieri A . Myeloablative chemotherapy with stem cell rescue for the treatment of primary systemic amyloidosis: a status report. Bone Marrow Transplant 2000; 25: 465–470.

    Article  CAS  PubMed  Google Scholar 

  7. Glenner GG, Terry W, Harada M et al. Amyloid fibril proteins: proof of homology with immunoglobulin light chains by sequence analyses. Science 1971; 172: 1150–1151.

    Article  CAS  PubMed  Google Scholar 

  8. Kyle GA, Gertz MA . Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin Hematol 1995; 32: 45–59.

    CAS  PubMed  Google Scholar 

  9. Solomon A, Frangione B, Franklin EC . Bence Jones proteins and light chains of immunoglobulins. Preferential association of the V lambda VI subgroup of human light chains with amyloidosis AL (lambda). J Clin Invest 1982; 70: 453–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Swan N, Skinner M, O’Hara CJ . Bone marrow core biopsy specimens in AL (primary) amyloidosis. A morphologic and immunohistochemical study of 100 cases. Am J Clin Pathol 2003; 120: 610–616.

    Article  PubMed  Google Scholar 

  11. Fan J, Gijbels I . Local Polynomial Modeling and its Applications. Chapmann and Hall: New York, 1996.

    Google Scholar 

  12. Watts MJ, Sullivan AM, Jamieson E et al. Progenitor-cell mobilization after low-dose cyclophosphamide and granulocyte colony-stimulating factor: an analysis of progenitor-cell quantity and quality and factors predicting for these parameters in 101 pretreated patients with malignant lymphoma. J Clin Oncol 1997; 15: 535–546.

    Article  CAS  PubMed  Google Scholar 

  13. Tricot G, Jagannath S, Vesole D et al. Peripheral blood stem cell transplants for multiple myeloma: identification of favorable variables for rapid engraftment in 225 patients. Blood 1995; 85: 588–596.

    CAS  PubMed  Google Scholar 

  14. To LB, Haylock DN, Simmons PJ, Juttner CA . The biology and clinical uses of blood stem cells. Blood 1997; 89: 2233–2258.

    CAS  PubMed  Google Scholar 

  15. Schiller G, Vescio R, Freytes C et al. Transplantation of CD34+ peripheral blood progenitor cells after high-dose chemotherapy for patients with advanced multiple myeloma. Blood 1995; 86: 390–397.

    CAS  PubMed  Google Scholar 

  16. Kiss JE, Rybka WB, Winkelstein A et al. Relationship of CD34+ cell dose to early and late hematopoiesis following autologous peripheral blood stem cell transplantation. Bone Marrow Transplant 1997; 19: 303–310.

    Article  CAS  PubMed  Google Scholar 

  17. Weaver CH, Hazelton B, Birch R et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 1995; 86: 3961–3969.

    CAS  PubMed  Google Scholar 

  18. Ketterer N, Salles G, Moullet I et al. Daily measurements of blood CD34+ cells after stem cell mobilization predict stem cell yield and posttransplant hematopoietic recovery. J Hematother 1997; 6: 13–19.

    Article  Google Scholar 

  19. Ketterer N, Salles G, Raba M et al. High CD34+ cell counts decrease hematologic toxicity of autologous peripheral blood progenitor cell transplantation. Blood 1998; 91: 3148–3155.

    CAS  PubMed  Google Scholar 

  20. Carral A, de la Rubia J, Martin G et al. Factors influencing hematopoietic recovery after autologous blood stem cell transplantation in patients with acute myeloblastic leukemia and with non-myeloid malignancies. Bone Marrow Transplant 2002; 29: 825–832.

    Article  CAS  PubMed  Google Scholar 

  21. Perez-Simon JA, Martin A, Caballero D et al. Clinical significance of CD34+ cell dose in long-term engraftment following autologous peripheral blood stem cell transplantation. Bone Marrow Transplant 1999; 24: 1279–1283.

    Article  CAS  PubMed  Google Scholar 

  22. Kyle RA, Gertz MA, Greipp PR et al. A trial of three regimens for primary amyloidosis: colchicine alone, melphalan and prednisone, and melphalan, prednisone, and colchicine. N Engl J Med 1997; 336: 1202–1207.

    Article  CAS  PubMed  Google Scholar 

  23. Gertz MA, Kyle RA, O’Fallon WM . Dialysis support of patients with primary systemic amyloidosis. A study of 211 patients. Arch Intern Med 1992; 152: 2245–2250.

    Article  CAS  PubMed  Google Scholar 

  24. Skinner M, Anderson J, Simms R et al. Treatment of 100 patients with primary amyloidosis: a randomized trial of melphalan, prednisone, and colchicine versus colchicine only. Am J Med 1996; 100: 290–298.

    Article  CAS  PubMed  Google Scholar 

  25. Casserly LF, Fadia A, Sanchorawala V et al. High-dose intravenous melphalan with autologous stem cell transplantation in AL amyloidosis-associated end-stage renal disease. Kidney Int 2003; 63: 1051–1057.

    Article  CAS  PubMed  Google Scholar 

  26. Badros A, Barlogie B, Siegel E et al. Results of autologous stem cell transplant in multiple myeloma patients with renal failure. Br J Haematol 2001; 114: 822–829.

    Article  CAS  PubMed  Google Scholar 

  27. Ballester OF, Tummala R, Janssen WE et al. High-dose chemotherapy and autologous peripheral blood stem cell transplantation in patients with multiple myeloma and renal insufficiency. Bone Marrow Transplant 1997; 20: 653–656.

    Article  CAS  PubMed  Google Scholar 

  28. Altun B, Arici M, Haznedaroglu IC et al. Serum thrombopoietin levels in haemodialysis patients: involvement of arteriovenous fistula. Nephrol Dial Transplant 1999; 14: 2173–2177.

    Article  CAS  PubMed  Google Scholar 

  29. Ando M, Iwamoto Y, Suda A et al. New insights into the thrombopoietic status of patients on dialysis through the evaluation of megakaryocytopoiesis in bone marrow and of endogenous thrombopoietin levels. Blood 2001; 97: 915–921.

    Article  CAS  PubMed  Google Scholar 

  30. Nash RA, Gooley T, Davis C, Appelbaum FR . The problem of thrombocytopenia after hematopoietic stem cell transplantation. Stem Cells 1996; 14 (Suppl. 1): 261–273.

    Article  PubMed  Google Scholar 

  31. Bernstein SH, Nademanee AP, Vose JM et al. A multicenter study of platelet recovery and utilization in patients after myeloablative therapy and hematopoietic stem cell transplantation. Blood 1998; 91: 3509–3517.

    CAS  PubMed  Google Scholar 

  32. Poskitt TR, Poskitt PK . Thrombocytopenia of sepsis. The role of circulating IgG-containing immune complexes. Arch Intern Med 1985; 145: 891–894.

    Article  CAS  PubMed  Google Scholar 

  33. Karle H . The pathogenesis of the anaemia of chronic disorders and the role of fever in erythrokinetics. Scand J Haematol 1974; 13: 81–86.

    Article  CAS  PubMed  Google Scholar 

  34. Chopra R, Linch DC, McMillan AK et al. Mini-BEAM followed by BEAM and ABMT for very poor risk Hodgkin's disease. Br J Haematol 1992; 81: 197–202.

    Article  CAS  PubMed  Google Scholar 

  35. Dreger P, Kloss M, Petersen B et al. Autologous progenitor cell transplantation: prior exposure to stem cell-toxic drugs determines yield and engraftment of peripheral blood progenitor cell but not of bone marrow grafts. Blood 1995; 86: 3970–3978.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Institutes of Health (HL 68705), Food and Drug Administration (FD-R-001346), the Gerry Foundation, the Young Family Amyloid Research Fund, the Sue Sellors Finley Cardiac Amyloid Research Fund, and the Amyloid Research Fund at Boston University. DCS is a Scholar of the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D C Seldin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oran, B., Malek, K., Sanchorawala, V. et al. Predictive factors for hematopoietic engraftment after autologous peripheral blood stem cell transplantation for AL amyloidosis. Bone Marrow Transplant 35, 567–575 (2005). https://doi.org/10.1038/sj.bmt.1704826

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704826

Keywords

This article is cited by

Search

Quick links