Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Graft-Versus-Host Disease

Impact of early NK cell recovery on development of GvHD and CMV reactivation in dose-reduced regimen prior to allogeneic PBSCT

Abstract

Summary:

Dose-reduced allogeneic peripheral blood stem cell transplantation (PBSCT) is a therapeutic approach for patients with haematological malignancies who are not eligible for conventional allogeneic PBSCT. We analysed early development of lymphocyte subpopulations and the occurrence of cytomegalovirus (CMV) reactivation and acute graft-versus-host reaction (GvHD) in patients undergoing the protocol according to Slavin vs conventionally treated patients. Lymphocyte status prior to conditioning and at day +30 after allogeneic PBSCT was determined in 24 out of 51 patients who received conventional allogeneic PBSCT (eg cyclophosphamide plus total body irradiation) and compared with 27 patients being treated according to the Slavin protocol (fludarabine, busulphan and ATG). There is a significant delay in CD4 (T helper) cell development and consecutive lower CD4/CD8 ratios and a better reconstitution of CD8 (T cytotoxic) and NK (natural killer) cells after the Slavin protocol. Patients undergoing this protocol and no, or only grade I, acute GvHD show an even better NK cell reconstitution compared to patients with grade II–IV GvHD. A low CD4/CD8 ratio represents a CMV risk factor only in conventionally treated patients with grade 0–I GvHD, while after preparative regimen according to the Slavin protocol, the NK/CD8 ratio might be a marker for the prediction of CMV reactivation in addition to CMV risk status.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Goldman J . Peripheral blood stem cells for allografting. Blood 1995; 85: 1413–1415.

    CAS  PubMed  Google Scholar 

  2. Russel N, Gratwohl A, Schmitz N et al. The place of blood stem cells in allogeneic transplantation. Br J Haematol 1996; 93: 747–753.

    Article  CAS  PubMed  Google Scholar 

  3. Bensinger WI, Weaver CH, Appelbaum FR et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony stimulating factor. Blood 1995; 85: 1655–1658.

    CAS  PubMed  Google Scholar 

  4. Bensinger WI, Martin PJ, Storer B et al. Transplantation of bone marrow as compared with peripheral blood cells from HLA-identical relatives in patients with hematologic cancers. N Engl J Med 2001; 344: 175–181.

    Article  CAS  PubMed  Google Scholar 

  5. Korbling M, Huh YO, Durett A et al. Allogeneic blood stem cell transplantation: peripheralization and yield of donor-derived primitive hematopoietic progenitor cells (CD34+ Thy-1dim) and lymphoid subsets, and possible predictors of engraftment and graft-versus-host disease. Blood 1995; 86: 2842–2848.

    CAS  PubMed  Google Scholar 

  6. Martino R, Caballero MD, Canals C et al. Reduced-intensitiy conditioning reduces the risk of severe infections after allogeneic peripheral stem cell transplantation. Bone Marrow Transplant 2001; 28: 341–347.

    Article  CAS  PubMed  Google Scholar 

  7. Mielcarek M, Martin PJ, Leisenring W et al. Graft-versus-host disease after nonmyeloablative versus conventional hematopoietic stem cell transplantation. Blood 2003; 102: 756–762.

    Article  CAS  PubMed  Google Scholar 

  8. Sharabi Y, Sachs DH . Mixed chimerism and permanent specific transplantation tolerance induced by a non-lethal preparative regimen. J Exp Med 1989; 169: 493–502.

    Article  CAS  PubMed  Google Scholar 

  9. Sykes M, Szot GL, Swenson KA et al. Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific tolerance without myelosuppressive conditioning. Nat Med 1997; 3: 783–787.

    Article  CAS  PubMed  Google Scholar 

  10. Mielcarek M, Sandmaier BM, Maloney DG et al. Nonmyeloablative hematopoietic cell transplantation: status quo and future perspectives. J Clin Immunol 2002; 22: 70–74.

    Article  PubMed  Google Scholar 

  11. Storb R, Yu C, Wagner JL et al. Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after bone marrow transplantation. Blood 1997; 89: 3048–3054.

    CAS  PubMed  Google Scholar 

  12. Slavin S, Nagler A, Naparstek E et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 1998; 91: 756–763.

    CAS  PubMed  Google Scholar 

  13. Yu C, Storb R, Mathey B et al. DLA-identical bone marrow grafts after low-dose total body irradiation: effects of high-dose corticosteroids and cyclosporine on engraftment. Blood 1995; 86: 4376–4381.

    CAS  PubMed  Google Scholar 

  14. Antin JH, Ferrara JL . Cytokine dysregulation and acute graft-versus-host disease. Blood 1992; 80: 2964–2968.

    CAS  PubMed  Google Scholar 

  15. Glucksberg H, Storb R, Fefer A et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HLA-matched sibling donors. Transplantation 1974; 18: 295–304.

    Article  CAS  PubMed  Google Scholar 

  16. Horowitz MM, Gale RP, Sondel PM et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990; 75: 555–562.

    CAS  PubMed  Google Scholar 

  17. Korngold R, Sprent J . T-cell subset and graft-versus-host disease. Transplantation 1987; 44: 335–339.

    Article  CAS  PubMed  Google Scholar 

  18. Krenger W, Hill GR, Ferrara JL et al. Cytokine cascades in acute graft-versus-host disease. Transplantation 1997; 64: 553–558.

    Article  CAS  PubMed  Google Scholar 

  19. Witherspoon RP, Kopecky K, Storb R et al. Immunological recovery in 48 patients following syngeneic marrow transplantation for hematological malignancy. Transplantation 1982; 33: 143–149.

    Article  CAS  PubMed  Google Scholar 

  20. Witherspoon RP, Lum LG, Storb R et al. Immunologic reconstitution after human marrow grafting. Semin Hematol 1984; 21: 2–10.

    CAS  PubMed  Google Scholar 

  21. Chan EY, Chiu EK, So MK et al. Peripheral blood lymphocyte subsets after allogeneic bone marrow transplantation: reconstitution and correlation with the occurrence of acute graft-versus-host disease. Asian Pac J Allergy Immunol 1994; 12: 117–123.

    CAS  PubMed  Google Scholar 

  22. Symann M, Bosly A, Gisselbrecht C et al. Immune reconstitution after bone marrow transplantation. Cancer Treatment Rev 1989; 16 (Suppl A): 15–19.

    Article  Google Scholar 

  23. Shiobara S, Ueda M, Harada M et al. Long-term observation of immunologic reconstitution after allogeneic bone marrow transplantation: differences in recovery among functional T cell subsets. Nippon Ketsueki Gakkai Zasshi 1989; 52: 55–62.

    CAS  PubMed  Google Scholar 

  24. Ottinger HD, Beelen DW, Scheulen B et al. Improved immune reconstitution after allotransplantation of peripheral blood stem cells instead of bone marrow. Blood 1996; 88: 2775–2779.

    CAS  PubMed  Google Scholar 

  25. Roberts MM, To LB, Gillis D et al. Immune reconstitution following peripheral blood stem cell transplantation, autologous bone marrow transplantation and allogeneic bone marrow transplantation. Bone Marrow Transplant 1993; 12: 469–475.

    CAS  PubMed  Google Scholar 

  26. Talmadge JE, Reed EC, Ino K et al. Rapid immunologic reconstitution following transplantation with mobilized peripheral blood stem cells as compared to bone marrow. Bone Marrow Transplant 1997; 19: 161–172.

    Article  CAS  PubMed  Google Scholar 

  27. Charbonnier A, Sainty D, Faucher C et al. Immune reconstitution after blood cell transplantation. Hematol Cell Ther 1997; 39: 252–256.

    Article  Google Scholar 

  28. Velardi A, Terenzi A, Cucciaioni S et al. Imbalances within the peripheral blood T-helper (CD4+) and T-suppressor (CD8+) cell populations in the reconstitution phase after human bone marrow transplantation. Blood 1988; 71: 1196–1200.

    CAS  PubMed  Google Scholar 

  29. Moller J, Hofmann B, Jacobsen N et al. Defective T-cell stimulatory pathways in patients after allogeneic bone marrow transplantation in man. APMIS 1993; 101: 480–486.

    Article  CAS  PubMed  Google Scholar 

  30. Flowers ME, Parker PM, Johnston LJ et al. Comparison of chronic graft-versus-host disease after transplantation of peripheral blood stem cells versus bone marrow in allogeneic recipients: long-term follow-up of a randomized trial. Blood 2002; 100: 415–419.

    Article  CAS  PubMed  Google Scholar 

  31. Trenschel R, Ross S, Hüsing J et al. Reduced risk of persisting cytomegalovirus pp65 antigenemia and cytomegalovirus interstitial pneumonia following allogeneic PBSCT. Bone Marrow Transplant 2000; 25: 665–672.

    Article  CAS  PubMed  Google Scholar 

  32. Maris M, Boeckh M, Storer B et al. Immunologic recovery after hematopoietic cell transplantation with nonmyeloablative conditioning. Exp Hematol 2003; 31: 941–952.

    Article  CAS  PubMed  Google Scholar 

  33. Junghanss C, Boeckh M, Carter RA et al. Incidence and outcome of cytomegalovirus infections following nonmyeloablative compared with myeloablative allogeneic stem cell transplantation, a matched control study. Blood 2002; 99: 1978–1985.

    Article  CAS  PubMed  Google Scholar 

  34. Shenoy S, Mohanakumar T, Todd et al. Immune reconstitution following allogeneic peripheral blood stem cell transplants. Bone Marrow Transplant 1999; 23: 335–346.

    Article  CAS  PubMed  Google Scholar 

  35. Morecki S, Gelfand Y, Nagler A et al. Immune reconstitution following allogeneic stem cell transplantation in recipients conditioned by low intensity vs. myeloablative regimen. Bone Marrow Transplant 2001; 28: 243–249.

    Article  CAS  PubMed  Google Scholar 

  36. Chakrabarti S, Mackinnon S, Chopra R et al. High incidence of cytomegalvirus infection after nonmyeloablative stem cell transplantation: potential role of Campath-1H in delaying immune reconstitution. Blood 2002; 99: 4357–4363.

    Article  CAS  PubMed  Google Scholar 

  37. Dokhelar MC, Wiels J, Lipinski M et al. Natural killer cell activity in human bone marrow recipients. Early reappearance of peripheral natural killer cell activity in graft-versus-host disease. Transplantation 1981; 31: 61–65.

    Article  CAS  PubMed  Google Scholar 

  38. Lange A, Jazwiec B, Tomaszewska-Toporska B et al. Recovery of natural cytotoxicity after bone marrow transplantation. Immunol Invest 1991; 20: 207–213.

    Article  CAS  PubMed  Google Scholar 

  39. Murphy WJ, Longo DL . The potential role of NK cells in the separation of graft-versus-tumor effects from graft-versus-host disease after allogeneic bone marrow transplantation. Immunol Rev 1997; 157: 491–495.

    Article  Google Scholar 

  40. Ruggeri L, Capanni M, Urbani E et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–3100.

    Article  CAS  PubMed  Google Scholar 

  41. McQueen KL, Parham P . Variable receptors controlling activation and inhibition of NK cells. Curr Opin Immunol 2002; 14: 615–621.

    Article  CAS  PubMed  Google Scholar 

  42. Shilling HG, McQueen KL, Cheng NW et al. Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation. Blood 2003; 101: 3730–3740.

    Article  CAS  PubMed  Google Scholar 

  43. Farag SS, Fehniger TA, Ruggeri L et al. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 2002; 100: 1935–1947.

    Article  CAS  PubMed  Google Scholar 

  44. Giebel S, Locatelli F, Lamparelli T et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood 2003; 102: 814–819.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are especially grateful to Professor M Boeckh (FHCRC, Seattle) for a critical reading of the manuscript and his helpful recommendations during the preparation. We also thank Ms Franke and Ms Herrmann for FACS analyses of peripheral blood lymphocytes and A Markusch for excellent help in analyses of patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Scholl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholl, S., Mügge, L., Charbel Issa, M. et al. Impact of early NK cell recovery on development of GvHD and CMV reactivation in dose-reduced regimen prior to allogeneic PBSCT. Bone Marrow Transplant 35, 183–190 (2005). https://doi.org/10.1038/sj.bmt.1704752

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704752

Keywords

This article is cited by

Search

Quick links