Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Counting the cost: markers of endothelial damage in hematopoietic stem cell transplantation

Summary:

During hematopoietic stem cell transplantation (HSCT), endothelial damage is the pathological hallmark of veno-occlusive disease of the liver, thrombotic microangiopathy, capillary leak syndrome and graft-versus-host disease. Events prior to conditioning, the conditioning regimen itself as well as calcineurin inhibitors may all induce endothelial damage. Unfortunately, the relative importance of these factors and their interactions, the time frame of endothelial damage and individual susceptibility remain unknown. Moreover, it is conceivable that conditioning regimens differ markedly in their propensity to initiate endothelial damage. Monitoring endothelial damage and response to treatment is hampered by the current lack of suitable markers. In this regard, an ideal marker should be sensitive and specific and indicate the development of an endothelial disorder prior to the onset of symptoms and organ dysfunction. Soluble markers, such as thrombomodulin, are easily amenable with immunoassays; yet, the interpretation of their levels is hampered by the influence of comorbidity. Evaluation of circulating endothelial cells in HSCT demonstrated a marked and dose-dependent increase in cell numbers after conditioning. The challenge ahead is to establish and evaluate novel markers of endothelial damage to permit early detection of disease, monitor response to treatment and evaluate different conditioning regimens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dignat-George F, Sampol J . Circulating endothelial cells in vascular disorders: new insights into an old concept. Eur J Haematol 2000; 65: 215–220.

    CAS  PubMed  Google Scholar 

  2. Woywodt A, Streiber F, de Groot K et al. Circulating endothelial cells as markers for ANCA-associated small-vessel vasculitis. Lancet 2003; 361: 206–210.

    CAS  PubMed  Google Scholar 

  3. Woywodt A, Schroeder M, Gwinner W et al. Elevated numbers of circulating endothelial cells in renal transplant recipients. Transplantation 2003; 76: 1–4.

    PubMed  Google Scholar 

  4. Woywodt A, Schroeder M, Mengel M et al. Circulating endothelial cells are a novel marker of cyclosporine-induced endothelial damage. Hypertension 2003; 41: 720–723.

    CAS  PubMed  Google Scholar 

  5. Woywodt A, Scheer J, Hambach L et al. Circulating endothelial cells as a marker of endothelial damage in allogeneic hematopoietic stem-cell transplantation. Blood 2004; 103: 3603–3605.

    CAS  PubMed  Google Scholar 

  6. Dimmeler S, Hermann C, Galle J et al. Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler Thromb Vasc Biol 1999; 19: 656–664.

    CAS  PubMed  Google Scholar 

  7. Woywodt A, Bahlmann FH, de Groot K et al. Circulating endothelial cells: life, death and detachment of the endothelial cell layer. Nephrol Dial Transplant 2002; 17: 1728–1730.

    PubMed  Google Scholar 

  8. Gulati R, Jevremovic D, Peterson TE et al. Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res 2003; 93: 1023–1025.

    CAS  PubMed  Google Scholar 

  9. Bahlmann FH, De Groot K, Spandau JM et al. Erythropoietin regulates endothelial progenitor cells. Blood 2004; 103: 921–926.

    CAS  PubMed  Google Scholar 

  10. Bahlmann FH, DeGroot K, Duckert T et al. Endothelial progenitor cell proliferation and differentiation is regulated by erythropoietin. Kidney Int 2003; 64: 1648–1652.

    CAS  PubMed  Google Scholar 

  11. Bahlmann FH, de Groot K, Haller H et al. Erythropoietin: is it more than correcting anaemia? Nephrol Dial Transplant 2004; 19: 20–22.

    CAS  PubMed  Google Scholar 

  12. Hill JM, Zalos G, Halcox JP et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003; 348: 593–600.

    PubMed  Google Scholar 

  13. Rauscher FM, Goldschmidt-Clermont PJ, Davis BH et al. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 2003; 108: 457–463.

    PubMed  Google Scholar 

  14. Lagaaij EL, Cramer-Knijnenburg GF, van Kemenade FJ et al. Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet 2001; 357: 33–37.

    CAS  PubMed  Google Scholar 

  15. Quaini F, Urbanek K, Beltrami AP et al. Chimerism of the transplanted heart. N Engl J Med 2002; 346: 5–15.

    PubMed  Google Scholar 

  16. Heil M, Ziegelhoeffer T, Mees B et al. A different outlook on the role of bone marrow stem cells in vascular growth: bone marrow delivers software not hardware. Circ Res 2004; 94: 573–574.

    CAS  PubMed  Google Scholar 

  17. Dimmeler S, Aicher A, Vasa M et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 2001; 108: 391–397.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bailey AS, Jiang S, Afentoulis M et al. Transplanted adult hematopoietic stem cells differentiate into functional endothelial cells. Blood 2004; 103: 13–19.

    CAS  PubMed  Google Scholar 

  19. Ikpeazu C, Davidson MK, Halteman D et al. Donor origin of circulating endothelial progenitors after allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 2000; 6: 301–308.

    CAS  PubMed  Google Scholar 

  20. Thiele J, Varus E, Wickenhauser C et al. [Chimerism of cardiomyocytes and endothelial cells after allogeneic bone marrow transplantation in chronic myeloid leukemia. An autopsy study]. Pathologe 2002; 23: 405–410.

    CAS  PubMed  Google Scholar 

  21. Daly AS, Xenocostas A, Lipton JH . Transplantation-associated thrombotic microangiopathy: twenty-two years later. Bone Marrow Transplant 2002; 30: 709–715.

    CAS  PubMed  Google Scholar 

  22. Pettitt AR, Clark RE . Thrombotic microangiopathy following bone marrow transplantation. Bone Marrow Transplant 1994; 14: 495–504.

    CAS  PubMed  Google Scholar 

  23. Richardson P, Guinan E . Hepatic veno-occlusive disease following hematopoietic stem cell transplantation. Acta Haematol 2001; 106: 57–68.

    CAS  PubMed  Google Scholar 

  24. Cahill RA, Spitzer TR, Mazumder A . Marrow engraftment and clinical manifestations of capillary leak syndrome. Bone Marrow Transplant 1996; 18: 177–184.

    CAS  PubMed  Google Scholar 

  25. Biedermann BC, Sahner S, Gregor M et al. Endothelial injury mediated by cytotoxic T lymphocytes and loss of microvessels in chronic graft versus host disease. Lancet 2002; 359: 2078–2083.

    PubMed  Google Scholar 

  26. Kulzer P, Wanner C . Thrombotic microangiopathy: a challenge with uncertain outcome. Nephrol Dial Transplant 1998; 13: 2154–2160.

    CAS  PubMed  Google Scholar 

  27. Eissner G, Multhoff G, Gerbitz A et al. Fludarabine induces apoptosis, activation, and allogenicity in human endothelial and epithelial cells: protective effect of defibrotide. Blood 2002; 100: 334–340.

    CAS  PubMed  Google Scholar 

  28. DeLeve LD, Shulman HM, McDonald GB . Toxic injury to hepatic sinusoids: sinusoidal obstruction syndrome (veno-occlusive disease). Semin Liver Dis 2002; 22: 27–42.

    PubMed  Google Scholar 

  29. DeLeve LD, McCuskey RS, Wang X et al. Characterization of a reproducible rat model of hepatic veno-occlusive disease. Hepatology 1999; 29: 1779–1791.

    CAS  PubMed  Google Scholar 

  30. Mor E, Pappo O, Bar-Nathan N et al. Defibrotide for the treatment of veno-occlusive disease after liver transplantation. Transplantation 2001; 72: 1237–1240.

    CAS  PubMed  Google Scholar 

  31. Williams LM, Fussell S, Veith RW et al. Pulmonary veno-occlusive disease in an adult following bone marrow transplantation. Case report and review of the literature. Chest 1996; 109: 1388–1391.

    CAS  PubMed  Google Scholar 

  32. Holler E, Kolb HJ, Moller A et al. Increased serum levels of tumor necrosis factor alpha precede major complications of bone marrow transplantation. Blood 1990; 75: 1011–1016.

    CAS  PubMed  Google Scholar 

  33. Nürnberger W, Willers R, Burdach S et al. Risk factors for capillary leakage syndrome after bone marrow transplantation. Ann Hematol 1997; 74: 221–224.

    PubMed  Google Scholar 

  34. Salat C, Holler E, Kolb HJ et al. Endothelial cell markers in bone marrow transplant recipients with and without acute graft-versus-host disease. Bone Marrow Transplant 1997; 19: 909–914.

    CAS  PubMed  Google Scholar 

  35. Nishida T, Hamaguchi M, Hirabayashi N et al. Intestinal thrombotic microangiopathy after allogeneic bone marrow transplantation: a clinical imitator of acute enteric graft-versus-host disease. Bone Marrow Transplant 2004; 33: 1143–1150.

    CAS  PubMed  Google Scholar 

  36. Schots R, Kaufman L, Van Riet I et al. Proinflammatory cytokines and their role in the development of major transplant-related complications in the early phase after allogeneic bone marrow transplantation. Leukemia 2003; 17: 1150–1156.

    CAS  PubMed  Google Scholar 

  37. Garlanda C, Dejana E . Heterogeneity of endothelial cells. Specific markers. Arterioscler Thromb Vasc Biol 1997; 17: 1193–1202.

    CAS  PubMed  Google Scholar 

  38. Weiler H, Isermann BH . Thrombomodulin. J Thromb Haemost 2003; 1: 1515–1524.

    CAS  PubMed  Google Scholar 

  39. Borawski J, Naumnik B, Pawlak K et al. Soluble thrombomodulin is associated with viral hepatitis, blood pressure, and medications in haemodialysis patients. Nephrol Dial Transplant 2001; 16: 787–792.

    CAS  PubMed  Google Scholar 

  40. Hergesell O, Andrassy K, Geberth S et al. Plasma thrombomodulin levels are dependent on renal function. Thromb Res 1993; 72: 455–458.

    CAS  PubMed  Google Scholar 

  41. Blann A, Seigneur M . Soluble markers of endothelial cell function. Clin Hemorheol Microcirc 1997; 17: 3–11.

    CAS  PubMed  Google Scholar 

  42. Blann A . von Willebrand factor and the endothelium in vascular disease. Br J Biomed Sci 1993; 50: 125–134.

    CAS  PubMed  Google Scholar 

  43. Blann AD, Tse W, Maxwell SJ et al. Increased levels of the soluble adhesion molecule E-selectin in essential hypertension. J Hypertens 1994; 12: 925–928.

    CAS  PubMed  Google Scholar 

  44. Borawski J, Naumnik B, Mysliwiec M . Increased soluble thrombomodulin does not always indicate endothelial injury. Clin Appl Thromb Hemost 2002; 8: 87–89.

    PubMed  Google Scholar 

  45. Combes V, Simon AC, Grau GE et al. In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. J Clin Invest 1999; 104: 93–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sabatier F, Roux V, Anfosso F et al. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity. Blood 2002; 99: 3962–3970.

    CAS  PubMed  Google Scholar 

  47. Shet AS, Aras O, Gupta K et al. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 2003; 102: 2678–2683.

    CAS  PubMed  Google Scholar 

  48. Kagawa H, Komiyama Y, Nakamura S et al. Expression of functional tissue factor on small vesicles of lipopolysaccharide-stimulated human vascular endothelial cells. Thromb Res 1998; 91: 297–304.

    CAS  PubMed  Google Scholar 

  49. VanWijk MJ, VanBavel E, Sturk A et al. Microparticles in cardiovascular diseases. Cardiovasc Res 2003; 59: 277–287.

    CAS  PubMed  Google Scholar 

  50. Nieuwland R, Berckmans RJ, McGregor S et al. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood 2000; 95: 930–935.

    CAS  PubMed  Google Scholar 

  51. Mallat Z, Benamer H, Hugel B et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 2000; 101: 841–843.

    CAS  PubMed  Google Scholar 

  52. Preston RA, Jy W, Jimenez JJ et al. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 2003; 41: 211–217.

    CAS  PubMed  Google Scholar 

  53. Sabatier F, Darmon P, Hugel B et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes 2002; 51: 2840–2845.

    CAS  PubMed  Google Scholar 

  54. Bretelle F, Sabatier F, Desprez D et al. Circulating microparticles: a marker of procoagulant state in normal pregnancy and pregnancy complicated by preeclampsia or intrauterine growth restriction. Thromb Haemost 2003; 89: 486–492.

    CAS  PubMed  Google Scholar 

  55. Brogan PA, Shah V, Brachet C et al. Endothelial microparticles: just blood ‘dust,’ or a ‘must’ for the diagnosis and monitoring of disease activity in childhood vasculitides? Cleveland Clin J Med 2002; 69: SII103–SII104.

    Google Scholar 

  56. Pihusch R, Wegner H, Salat C et al. Flow cytometric findings in platelets of patients following allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2002; 30: 381–387.

    CAS  PubMed  Google Scholar 

  57. Bouvier CA, Gaynor E, Cintron JR et al. Circulating endothelium as an indication of vascular injury. Thromb Diath Haemorrh 1970; 40: 163.

    Google Scholar 

  58. Hladovec J, Prerovsky I, Stanek V et al. Circulating endothelial cells in acute myocardial infarction and angina pectoris. Klin Wochenschr 1978; 56: 1033–1036.

    CAS  PubMed  Google Scholar 

  59. Dignat-George FS J. CD146. Vol. 2003: Protein reviews on the web, 2003.

  60. Bardin N, Anfosso F, Masse JM et al. Identification of CD146 as a component of the endothelial junction involved in the control of cell–cell cohesion. Blood 2001; 98: 3677–3684.

    CAS  PubMed  Google Scholar 

  61. Anfosso F, Bardin N, Vivier E et al. Outside-in signaling pathway linked to CD146 engagement in human endothelial cells. J Biol Chem 2001; 276: 1564–1569.

    CAS  PubMed  Google Scholar 

  62. Rafii S, Lyden D . Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 2003; 9: 702–712.

    CAS  PubMed  Google Scholar 

  63. Woywodt A, Goldberg C, Regelsberger H et al. A novel assay for the enumeration of circulating endothelial cells. Ann Hematol 2004; 83: 491–494.

    CAS  PubMed  Google Scholar 

  64. Dignat-George F, Sampol J . Circulating endothelial cells in vascular disorders: new insights into an old concept. Eur J Haematol 2000; 65: 215–220.

    CAS  PubMed  Google Scholar 

  65. Percivalle E, Revello MG, Vago L et al. Circulating endothelial giant cells permissive for human cytomegalovirus (HCMV) are detected in disseminated HCMV infections with organ involvement. J Clin Invest 1993; 92: 663–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mutin M, Canavy I, Blann A et al. Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells. Blood 1999; 93: 2951–2958.

    CAS  PubMed  Google Scholar 

  67. George F, Brouqui P, Boffa MC et al. Demonstration of Rickettsia conorii-induced endothelial injury in vivo by measuring circulating endothelial cells, thrombomodulin, and von Willebrand factor in patients with Mediterranean spotted fever. Blood 1993; 82: 2109–2116.

    CAS  PubMed  Google Scholar 

  68. Drancourt M, George F, Brouqui P et al. Diagnosis of Mediterranean spotted fever by indirect immunofluorescence of Rickettsia conorii in circulating endothelial cells isolated with monoclonal antibody-coated immunomagnetic beads. J Infect Dis 1992; 166: 660–663.

    CAS  PubMed  Google Scholar 

  69. Grefte A, van der Giessen M, van Son W et al. Circulating cytomegalovirus (CMV)-infected endothelial cells in patients with an active CMV infection. J Infect Dis 1993; 167: 270–277.

    CAS  PubMed  Google Scholar 

  70. Woywodt A, Haller H, Haubitz M . Circulating endothelial cells and vasculitis. Internal Med, in press.

  71. Woywodt A, Schröder M, Gwinner W et al. Elevated numbers of circulating endothelial cells in renal transplant recipients. Transplantation 2003; 76: 1–4.

    PubMed  Google Scholar 

  72. Nürnberger W, Michelmann I, Burdach S et al. Endothelial dysfunction after bone marrow transplantation: increase of soluble thrombomodulin and PAI-1 in patients with multiple transplant-related complications. Ann Hematol 1998; 76: 61–65.

    PubMed  Google Scholar 

  73. Testa S, Manna A, Porcellini A et al. Increased plasma level of vascular endothelial glycoprotein thrombomodulin as an early indicator of endothelial damage in bone marrow transplantation. Bone Marrow Transplant 1996; 18: 383–388.

    CAS  PubMed  Google Scholar 

  74. Luzzatto G, Cella G, Messina C et al. Markers of endothelial function in pediatric stem cell transplantation for acute leukemia. Med Pediatr Oncol 2003; 40: 9–12.

    PubMed  Google Scholar 

  75. Takatsuka H, Wakae T, Mori A et al. Effects of total body irradiation on the vascular endothelium. Clin Transplant 2002; 16: 374–377.

    PubMed  Google Scholar 

  76. Catani L, Gugliotta L, Vianelli N et al. Endothelium and bone marrow transplantation. Bone Marrow Transplant 1996; 17: 277–280.

    CAS  PubMed  Google Scholar 

  77. Collins PW, Gutteridge CN, O'Driscoll A et al. von Willebrand factor as a marker of endothelial cell activation following BMT. Bone Marrow Transplant 1992; 10: 499–506.

    CAS  PubMed  Google Scholar 

  78. Zeigler ZR, Rosenfeld CS, Andrews III DF et al. Plasma von Willebrand factor antigen (vWF:AG) and thrombomodulin (TM) levels in adult thrombotic thrombocytopenic purpura/hemolytic uremic syndromes (TTP/HUS) and bone marrow transplant-associated thrombotic microangiopathy (BMT-TM). Am J Hematol 1996; 53: 213–220.

    CAS  PubMed  Google Scholar 

  79. Garcia-Barros M, Paris F, Cordon-Cardo C et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003; 300: 1155–1159.

    CAS  PubMed  Google Scholar 

  80. Tansik R, Hong TJ, Spector NL et al. Circulating endothelial cells and other biomarkers of angiogenesis in patients with lung, breast, and colorectal carcinomas. Proc Am Soc Clin Oncol 2003; 22: 868.

    Google Scholar 

  81. Pena LA, Fuks Z, Kolesnick RN . Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 2000; 60: 321–327.

    CAS  PubMed  Google Scholar 

  82. Paris F, Fuks Z, Kang A et al. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 2001; 293: 293–297.

    CAS  PubMed  Google Scholar 

  83. Kaushal V, Kaushal GP, Melkaveri SN et al. Thalidomide protects endothelial cells from doxorubicin-induced apoptosis but alters cell morphology. J Thromb Haemost 2004; 2: 327–334.

    CAS  PubMed  Google Scholar 

  84. Wu S, Ko YS, Teng MS et al. Adriamycin-induced cardiomyocyte and endothelial cell apoptosis: in vitro and in vivo studies. J Mol Cell Cardiol 2002; 34: 1595–1607.

    CAS  PubMed  Google Scholar 

  85. Shen ZX, Shi ZZ, Fang J et al. All-trans retinoic acid/As2O3 combination yields a high quality remission and survival in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci USA 2004; 101: 5328–5335.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Roboz GJ, Dias S, Lam G et al. Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis. Blood 2000; 96: 1525–1530.

    CAS  PubMed  Google Scholar 

  87. Scaffidi P, Misteli T, Bianchi ME . Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418: 191–195.

    CAS  PubMed  Google Scholar 

  88. Jemmerson R, LaPlante B, Treeful A . Release of intact, monomeric cytochrome c from apoptotic and necrotic cells. Cell Death Differ 2002; 9: 538–548.

    CAS  PubMed  Google Scholar 

  89. Jahr S, Hentze H, Englisch S et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001; 61: 1659–1665.

    CAS  PubMed  Google Scholar 

  90. Basu S, Binder RJ, Suto R et al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 2000; 12: 1539–1546.

    CAS  PubMed  Google Scholar 

  91. Li M, Carpio DF, Zheng Y et al. An essential role of the NF-kappa B/Toll-like receptor pathway in induction of inflammatory and tissue-repair gene expression by necrotic cells. J Immunol 2001; 166: 7128–7135.

    CAS  PubMed  Google Scholar 

  92. Barker RN, Erwig LP, Hill KS et al. Antigen presentation by macrophages is enhanced by the uptake of necrotic, but not apoptotic, cells. Clin Exp Immunol 2002; 127: 220–225.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Krysko DV, Brouckaert G, Kalai M et al. Mechanisms of internalization of apoptotic and necrotic L929 cells by a macrophage cell line studied by electron microscopy. J Morphol 2003; 258: 336–345.

    PubMed  Google Scholar 

  94. Nauta AJ, Raaschou-Jensen N, Roos A et al. Mannose-binding lectin engagement with late apoptotic and necrotic cells. Eur J Immunol 2003; 33: 2853–2863.

    CAS  PubMed  Google Scholar 

  95. Hirt UA, Leist M . Rapid, noninflammatory and PS-dependent phagocytic clearance of necrotic cells. Cell Death Differ 2003; 10: 1156–1164.

    CAS  PubMed  Google Scholar 

  96. Wolfrum S, Jensen KS, Liao JK . Endothelium-dependent effects of statins. Arterioscler Thromb Vasc Biol 2003; 23: 729–736.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Woywodt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woywodt, A., Haubitz, M., Buchholz, S. et al. Counting the cost: markers of endothelial damage in hematopoietic stem cell transplantation. Bone Marrow Transplant 34, 1015–1023 (2004). https://doi.org/10.1038/sj.bmt.1704733

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704733

Keywords

This article is cited by

Search

Quick links