Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Donor lymphocyte infusions for multiple myeloma: clinical results and novel perspectives

Summary:

Donor lymphocyte infusions (DLIs) provide effective therapy for patients with various hematological malignancies who have relapsed after allogeneic hematopoietic stem cell transplantation (HSCT). In patients with multiple myeloma (MM), DLIs can induce response rates of 40–52%. DLIs were employed as treatment for MM relapse or as prophylaxis for relapse in MM patients undergoing allo-HSCT. The clinically most relevant treatment-related morbidity with DLIs is the occurrence of graft-versus-host disease (GVHD). Secondly, graft failure and the immune escape of extramedullary plasmocytoma have been reported. The fact that previous clinical reports have documented graft-versus-myeloma (GVM) activity without GVHD suggests that at least two distinct immunocompetent cell populations mediating GVHD and/or GVM may exist. Further characterization of the effector cells such as T cells and/or NK cells and their targets may help to clarify the immune response that mediates the GVM effect. This review considers the results of clinical approaches with DLI for MM, with emphasis on strategies to prevent GVHD while preserving the GVM effect. Furthermore, currently investigated molecular antigenic targets for the GVM effect such as MM-specific idiotypic determinant of immunglobulin variable regions, several PRAME epitopes and antigenic structures encoded by cancer germline-specific genes as candidates for immunotherapy trials are discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bensinger WI, Buckner CD, Anasetti C et al. Allogeneic marrow transplantation for multiple myeloma: An analysis of risk factors on outcome. Blood 1996; 88: 2787–2793.

    CAS  PubMed  Google Scholar 

  2. Gahrton G, Tura S, Ljungman P et al. Prognostic factors in allogeneic bone marrow transplantation for multiple myeloma. J Clin Oncol 1995; 13: 1312–1320.

    Article  CAS  PubMed  Google Scholar 

  3. Martinelli G, Terragna C, Zamagni E et al. Molecular remission after allogeneic or autologous transplantation of hematopoietic stem cells for multiple myeloma. J Clin Oncol 2000; 18: 2273–2281.

    Article  CAS  PubMed  Google Scholar 

  4. Reece DE, Shepherd JD, Klingemann HG et al. Treatment of myeloma using intensive therapy and allogeneic bone marrow transplantation. Bone Marrow Transplant 1995; 15: 117–123.

    CAS  PubMed  Google Scholar 

  5. Majolino I, Corradini P, Scime R et al. High rate of remission and low rate of disease recurrence in patients with multiple myeloma allografted with PBSC from their HLA-identical sibling donors. Bone Marrow Transplant 2003; 31: 767–773.

    Article  CAS  PubMed  Google Scholar 

  6. Bensinger WI, Buckner CD, Clift RA et al. Phase I study of busulfan and cyclophosphamide in preparation for allogeneic marrow transplant for patients with multiple myeloma. J Clin Oncol 1992; 10: 1492–1497.

    Article  CAS  PubMed  Google Scholar 

  7. Bellucci R, Ritz J . Allogeneic stem cell transplantation for multiple myeloma. Rev Clin Exp Hematol 2002; 6: 205–224.

    Article  PubMed  Google Scholar 

  8. Huff CA, Fuchs EJ, Noga SJ et al. Long-term follow-up of T cell-depleted allogeneic bone marrow transplantation in refractory multiple myeloma: importance of allogeneic T cells. Biol Blood Marrow Transplant 2003; 9: 312–319.

    Article  PubMed  Google Scholar 

  9. Alyea E, Weller E, Schlossman R et al. T-cell-depleted allogeneic bone marrow transplantation followed by donor lymphocyte infusion in patients with multiple myeloma: induction of graft-versus-myeloma effect. Blood 2001; 98: 934–939.

    Article  CAS  PubMed  Google Scholar 

  10. Badros A, Barlogie B, Morris C et al. High response rate in refractory and poor-risk multiple myeloma after allotransplantation using a nonmyeloablative conditioning regimen and donor lymphocyte infusions. Blood 2001; 97: 2574–2579.

    Article  CAS  PubMed  Google Scholar 

  11. Peggs KS, Mackinnon S, Williams CD et al. Reduced intensity transplantation with in vivo T-cell depletion and adjuvant dose-escalating donor lymphocyte infusios for chemotherapy-sensitive myeloma: limited efficacy of graft-versus-tumor activity. Biol Blood Marrow Transplant 2003; 9: 257–265.

    Article  PubMed  Google Scholar 

  12. Peggs KS, Thomson K, Hart DP et al. Dose-escalated donor lymphocyte infusions following reduced intensity transplantation: toxicity, chimerism, and disease responses. Blood 2004; 103: 1548–1556.

    Article  CAS  PubMed  Google Scholar 

  13. Tricot G, Vesole DH, Jagannath S et al. Graft versus myeloma effect: proof of principle. Blood 1996; 87: 1196–1198.

    CAS  PubMed  Google Scholar 

  14. Verdonck L, Lokhorst H, Dekker A et al. Graft-versus-myeloma effect in two cases. Lancet 1996; 347: 800–801.

    Article  CAS  PubMed  Google Scholar 

  15. Bertz H, Burger JA, Kunzmann R et al. Adoptive immunotherapy for relapsed multiple myeloma after allogeneic BMT: evidence of a graft-versus-myeloma effect. Leukemia 1997; 11: 281–283.

    Article  CAS  PubMed  Google Scholar 

  16. Orsini E, Alyea EP, Schlossmann R et al. Expansion of preexisting clonal populations following donor lymphocyte infusion for relapsed multiple myeloma after allogeneic bone marrow transplantation. Blood 1997; 90 (Suppl 1): 549a.

    Google Scholar 

  17. Munshi NC, Govindarajan R, Drake R et al. Thymidine kinase (TK) gene-transduced human lymphocytes can be highly purified, remain fully functional, and are killed efficiently with ganciclovir. Blood 1997; 89: 1334–1340.

    CAS  PubMed  Google Scholar 

  18. Lokhorst HM, Schattenberg A, Cornelissen JJ et al. Donor leukocyte infusions are effective in relapsed multiple myeloma after allogeneic bone marrow transplantation. Blood 1997; 90: 4206–4211.

    CAS  PubMed  Google Scholar 

  19. Salama M, Nevill T, Marcellus T et al. Donor leukocyte infusions for multiple myeloma. Bone Marrow Transplant 2000; 26: 1179–1184.

    Article  CAS  PubMed  Google Scholar 

  20. Lokhorst HM, Schattenberg A, Cornelissen JJ et al. Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome. J Clin Oncol 2000; 18: 3031–3037.

    Article  CAS  PubMed  Google Scholar 

  21. Balkwill FR . Interferons. Lancet 1989; 1: 1060–1063.

    Article  CAS  PubMed  Google Scholar 

  22. Upadhyaya G, Guba SC, Sih SA et al. Interferon alpha restores the deficient expression of the cytoadhesion molecule lymphocyte function antigen-3 by chronic myelogenous leukemia progenitor cells. J Clin Invest 1991; 88: 2131–2136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. MacKinnon S . Who may benefit from donor leukocyte infusions after allogeneic stem cell transplantation? Br J Haematol 2000; 110: 12–17.

    Article  CAS  PubMed  Google Scholar 

  24. Zomas A, Stefanoudaki K, Fisfis M et al. Graft-versus-myeloma after donor leukocyte infusion: maintenance of marrow remission but extramedullary relapse with plasmocytomas. Bone Marrow Transplant 1998; 21: 1163–1165.

    Article  CAS  PubMed  Google Scholar 

  25. Yang YG, Sergio JJ, Pearson DA et al. Interleukin-12 preserves the graft-versus-leukemia effect of allogeneic CD8T cells while inhibiting CD4-dependent graft-versus-host disease in mice. Blood 1997; 90: 4651–4660.

    CAS  PubMed  Google Scholar 

  26. Anderson LD, Savary CA, Mullen CA . Immunization of allogeneic bone marrow transplant recipients with tumor cell vaccines enhances graft-versus-tumor activity without exacerbating graft-versus-host disease. Blood 2000; 95: 2426–2433.

    CAS  PubMed  Google Scholar 

  27. Tsukada N, Kobata T, Aizawa Y et al. Graft-versus-leukemia effect and graft-versus-host disease can be differentiated by cytotoxic mechanisms in a murine model of allogeneic bone marrow transplantation. Blood 1999; 93: 2738–2747.

    CAS  PubMed  Google Scholar 

  28. Alyea EP, Soiffer RJ, Canning C et al. Toxicity and efficacy of defined doses of CD4(+) donor lymphocytes for treatment of relapse after allogeneic bone marrow transplant. Blood 1998; 91: 3671–3680.

    CAS  PubMed  Google Scholar 

  29. Giralt S, Hester J, Huh Y et al. CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation. Blood 1995; 86: 4337–4343.

    CAS  PubMed  Google Scholar 

  30. Mackinnon S, Papadopoulos EB, Carabasi MH et al. Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 1995; 86: 1261–1268.

    CAS  PubMed  Google Scholar 

  31. Kwak LW, Campbell MJ, Czerwinski DK et al. Induction of immune responses in patients with B-cell lymphoma against the surface-immunglobulin idiotype expressed by their tumors. N Engl J Med 1992; 237: 1209–1215.

    Article  Google Scholar 

  32. Hsu FJ, Caspar CB, Czervinski D et al. Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma – long-term results of a clinical trial. Blood 1997; 98: 3129–3135.

    Google Scholar 

  33. Bogen B . Peripheral T cell tolerance as a tumor escape mechanism: deletion of CD4+ T cells specific for a monoclonal immunglobulin idiotype secreted by a plasmacytoma. Eur J Immunol 1996; 26: 2671–2679.

    Article  CAS  PubMed  Google Scholar 

  34. Kwak LW, Taub DD, Duffey PL et al. Transfer of myeloma idiotype-specific immunity from an actively immunized marrow donor. Lancet 1995; 345: 1016.

    Article  CAS  PubMed  Google Scholar 

  35. Barratt-Boyes SM . Making the most of mucin: a novel target for tumor immunotherapy. Cancer Immunol Immunother 1996; 43: 142–148.

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi T, Makiguchi Y, Hinoda Y et al. Expression of MUC1 on myeloma cells and induction of HLA-unrestricted cytotoxic T lymphocytes against MUC1 from a multiple myeloma patient. J Immunol 1994; 152: 2102–2112.

    Google Scholar 

  37. Brossart P, Schneider A, Dill P et al. The epithelial tumor antigen MUC1 is expressed in hematological malignancies and is recognized by MUC1-specific cytotoxic T-lymphocytes. Cancer Res 2001; 61: 6846–6851.

    CAS  PubMed  Google Scholar 

  38. Ikeda H, Lethe B, Lehmann F et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 1997; 6: 199–204.

    Article  CAS  PubMed  Google Scholar 

  39. van Baren N, Chambost H, Ferrant A et al. PRAME, a gene encoding an antigen recognized on a human melanoma by cytolytic T cells, is expressed in acute leukemia cells. Br J Haematol 1998; 102: 1376–1381.

    Article  CAS  PubMed  Google Scholar 

  40. van Baren N, Brasseur F, Godelaine D et al. Genes encoding tumor-specific antigens are expressed in human myeloma cells. Blood 1999; 94: 1156–1164.

    CAS  PubMed  Google Scholar 

  41. Kessler JH, Beekman NJ, Bres-Vloemans SA et al. Efficient identification of novel HLA-A*0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J Exp Med 2001; 193: 73–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boon T, van der Bruggen P . Human Tumor antigens recognized by T lymphocytes. J Exp Med 1996; 183: 725–729.

    Article  CAS  PubMed  Google Scholar 

  43. Szmania SM, Pomtree M, Batchu RB et al. Pre-existent humoral and cellular immunity to NY-ESO-1. Blood 2003; 102 (Suppl 1): 3464a.

    Google Scholar 

  44. Pellat-Deceunynck C, Mellerin M-P, Labarriere N et al. The cancer germ-line genes MAGE-1, MAGE-3 and PRAME are commonly expressed by human myeloma cells. Eur J Immunol 2000; 30: 803–809.

    Article  CAS  PubMed  Google Scholar 

  45. Tarte K, de Vos J, Thykjaer T et al. Generation of polyclonal plasmablasts from peripheral blood B cells: a normal counterpart of malignant plasmablasts. Blood 2002; 100: 1113–1122.

    CAS  PubMed  Google Scholar 

  46. Chesi M, Bergsagel PL, Brents LA et al. Dysregulation of Cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood 1996; 88: 674–681.

    CAS  PubMed  Google Scholar 

  47. Chesi M, Nardini E, Lim RS et al. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel geen, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 1998; 92: 3025–3032.

    CAS  PubMed  Google Scholar 

  48. Zhan F, Hardin J, Kordsmeier B et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 2002; 99: 1745–1751.

    Article  CAS  PubMed  Google Scholar 

  49. Bellucci R, Wu CJ, Chiaretti S et al. Complete response to donor lymphocyte infusion in multiple myeloma is associated with antibody responses to highly expressed antigens. Blood 2004; 103: 656–663.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Finke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeiser, R., Bertz, H., Spyridonidis, A. et al. Donor lymphocyte infusions for multiple myeloma: clinical results and novel perspectives. Bone Marrow Transplant 34, 923–928 (2004). https://doi.org/10.1038/sj.bmt.1704670

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704670

Keywords

This article is cited by

Search

Quick links