Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunotherapy

Murine B-cell leukemia lymphoma (BCL1) cells as a target for NK cell-mediated immunotherapy

Summary:

Natural killer (NK) cells are important for their ability to recognize and lyse tumor cells and virus infected cells. NK cells express triggering receptors that are specific for non-MHC ligands. This article describes the 35S release cytotoxic assay, which measures the ability of NK cells derived from spleen cells taken from polyIC-treated mice to lyse B-cell leukemia (BCL1) cells. BCL1 cells express ligands for NKp46 on the cell surface membrane and they are sensitive to allogeneic but not syngeneic IL-2 activated natural killer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Slavin S, Weiss L, Morecki S, Weigensberg M . Eradication of murine leukemia with histoincompatible marrow grafts in mice conditioned with total lymphoid irradiation (TLI). Cancer Immunol Immunother 1981; 11: 155–158.

    Article  Google Scholar 

  2. Truitt RL, Shih CY, Lefever AV et al. Characterization of alloimmunization-induced T lymphocytes reactive against AKR leukemia in vitro and correlation with graft-vs-leukemia activity in vivo. J Immunol 1983; 131: 2050–2058.

    CAS  PubMed  Google Scholar 

  3. Weiss L, Weigensberg M, Morecki S et al. Characterization of effector cells of graft vs leukemia (GVL) following allogeneic bone marrow transplantation in mice inoculated with murine B-cell leukemia (BCL1). Cancer Immunol Immunother 1990; 31: 236–242.

    Article  CAS  PubMed  Google Scholar 

  4. Horowitz M, Gale RP, Sondel PM et al. Graft vs leukemia reactions after bone marrow transplantation. Blood 1990; 75: 555–562.

    CAS  PubMed  Google Scholar 

  5. Ruggeri L, Capanni M, Urbani E et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097–2100.

    Article  CAS  PubMed  Google Scholar 

  6. Rosenberg SA, Lotze MT, Muul LM et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 1987; 316: 889–897.

    Article  CAS  PubMed  Google Scholar 

  7. Cudkowicz G, Bennett M . Peculiar immunobiology of bone marrow allografts. II. Rejection of parental grafts by resistant F1 hybrid mice. J Exp Med 1971; 134: 1513–1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rosenberg SA, Lotze MT, Muul LM et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985; 313: 1485–1492.

    Article  CAS  PubMed  Google Scholar 

  9. Cohen P, Vourka-Karussis U, Weiss L, Slavin S . Spontaneous and IL-2 induced anti-leukemic and anti-host effects against tumor-and host-specific alloantigens. J Immunol 1993; 151: 4803–4810.

    CAS  PubMed  Google Scholar 

  10. Ackerstein A, Slavin S, Weiss L, Naparstek E . Immunotherapy in conjunction with autologous bone marrow transplantation. BMT 1990; 5: 38.

    Google Scholar 

  11. Ackerstein A, Kedar E, Slavin S . Use of recombinant human interleukin-2 in conjunction with syngeneic bone marrow transplantation as a model for control of minimal residual disease in malignant hematological disorders. Blood 1991; 78: 1212–1215.

    CAS  PubMed  Google Scholar 

  12. Weiss L, Reich S, Slavin S . Use of recombinant human interleukin-2 in conjunction with bone marrow transplantation as a model for control of minimal residual disease in malignant hematological disorders. I. Treatment of murine leukemia in conjunction with allogeneic bone marrow transplantation and IL2-activated cell-mediated immunotherapy. Cancer Invest 1992; 10: 19–26.

    Article  CAS  PubMed  Google Scholar 

  13. Slavin S, Ackerstein A, Weiss L et al. Immunotherapy of minimal residual disease by immunocompetent lymphocytes and their activation by cytokines. Cancer Invest 1992; 10: 221–227.

    Article  CAS  PubMed  Google Scholar 

  14. Weiss L, Lubin I, Factorowich I et al. Effective graft vs leukemia effects independent of graft vs host disease after T-cell depleted allogeneic bone marrow transplantation in a murine model of B cell leukemia/lymphoma. Role of cell therapy and rIL-2. J Immunol 1994; 153: 2562–2567.

    CAS  PubMed  Google Scholar 

  15. Vourka-Karussis U, Ackerstein A, Pugatsch T, Slavin S . Allogeneic cell-mediated immunotherapy for eradication of MRD: comparison of T-cell and lymphokine activated killer (LAK) cell mediated adoptive immunotherapy in murine models. Exp Hematol 1999; 27: 461–469.

    Article  CAS  PubMed  Google Scholar 

  16. Weiss L, Reich S, Slavin S . The role of antibodies to IL-2 receptor and anti-Asialo GMI antibodies on GVL effects induced by BMT in murine B cell leukemia. Bone Marrow Transplant 1995; 16: 457–461.

    CAS  PubMed  Google Scholar 

  17. Slavin S, Strober S . Spontaneous murine B-cell leukemia. Nature 1978; 272: 624–626.

    Article  CAS  PubMed  Google Scholar 

  18. Katz G, Markel G, Mizrahi S et al. Recognition of HLA-Cw4 but not HLA-Cw6 by the NK cell receptor killer cell Ig-like receptor two-domain short tail number 4. J Immunol 2001; 166: 7260–7267.

    Article  CAS  PubMed  Google Scholar 

  19. Mandelboim O, Lieberman N, Lev M et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 2001; 409: 1055–1060.

    Article  CAS  PubMed  Google Scholar 

  20. Porgador A, Mandelboim O, Restifo NP, Strominger JL . Natural killer cell lines kill autologous beta2-microglobulin-deficient melanoma cells: implications for cancer immunotherapy. Proc Natl Acad Sci USA 1997; 94: 13140–13145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moretta L, Biassoni R, Bottino C et al. Surface receptors that regulate the NK cell function: beyond the NK cell scope. Curr Top Microbiol Immunol 2002; 266: 11–22.

    CAS  PubMed  Google Scholar 

  22. Vitetta ES, Yuan D, Krollick K et al. Characterization of the spontaneous murine B cell leukemia (BCL1). III. Evidence for monoclonality using an anti-idiotype antibody. J Immunol 1979; 122: 1649–1654.

    CAS  PubMed  Google Scholar 

  23. Yuan D, Uhr JW, Knapp MR et al. Structural differences between μ chain of cell associated and secreted immunoglobulin. In: Cooper M, Mosier D, Scher I, Vitetta E (eds.). B Lymphocytes in the Immune Response. Elsevier: Amsterdam, 1979; pp 23–31.

    Google Scholar 

  24. Knapp MR, Jones PP, Black SJ et al. Characterization of a spontaneous murine B cell leukemia (BCL1). 1. Cell surface expression of IgM, IgD, Ia and FcR. J Immunol 1979; 123: 992–999.

    CAS  PubMed  Google Scholar 

  25. Weiss L, Morecki S, Vitetta ES, Slavin S . Suppression and elimination of BCL1 leukemia by allogeneic bone marrow transplantation. J Immunol 1983; 130: 2452–2455.

    CAS  PubMed  Google Scholar 

  26. Prigozhina T, Gurevitch O, Morecki S et al. Non-myeloablative allogeneic bone marrow transplantation as immunotherapy for hematologic malignancies and metastatic solid tumors in pre-clinical models. Exp Hematol 2002; 30: 89–96.

    Article  PubMed  Google Scholar 

  27. Slavin S, Naparstek E, Nagler A et al. Allogeneic cell therapy with donor peripheral blood cells and recombinant human interleukin-2 to treat leukemia relapse post allogeneic bone marrow transplantation. Blood 1996; 87: 2195–2204.

    CAS  PubMed  Google Scholar 

  28. Leshem B, Vourka Karussis U, Slavin S . Correlation between enhancement of graft vs leukemia effects following allogeneic bone marrow transplantation by rIL-2 and increased frequency of cytotoxic T-lymphocyte precursors in murine myeloid leukemia. Cytokines, Cell Mol Ther 2000; 6: 141–147.

    Article  CAS  Google Scholar 

  29. Weiss L, Reich S, Slavin S . The role of antibodies to IL-2 receptor and anti-Asialo GMI antibodies on GVL effects induced by BMT in murine B cell leukemia. Bone Marrow Transplant 1995; 16: 457–461.

    CAS  PubMed  Google Scholar 

  30. Moretta L, Bottino C, Pende D et al. Human natural killer cells: their origin, receptors and function. Eur J Immunol 2002; 32: 1205–1211, (Review).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Danny Cunniff Leukemia Research Laboratory; the Gabrielle Rich Leukemia Research Foundation; the Cancer Treatment Research Foundation; the Novotny Trust and the Fig Tree Foundation for their continuous support of our ongoing basic and clinical research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Slavin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, L., Reich, S., Mandelboim, O. et al. Murine B-cell leukemia lymphoma (BCL1) cells as a target for NK cell-mediated immunotherapy. Bone Marrow Transplant 33, 1137–1141 (2004). https://doi.org/10.1038/sj.bmt.1704475

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704475

Keywords

This article is cited by

Search

Quick links